Your browser doesn't support javascript.
loading
Fluvastatin attenuated ischemia/reperfusion-induced autophagy and apoptosis in cardiomyocytes through down-regulation HMGB1/TLR4 signaling pathway.
Ding, Hua-Sheng; Yang, Jun; Yang, Jian; Guo, Xin; Tang, Yan-Hong; Huang, Yan; Chen, Zhen; Fan, Zhi-Xing; Huang, Cong-Xin.
Afiliação
  • Ding HS; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.
  • Yang J; Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China.
  • Yang J; Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
  • Guo X; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, 443000, People's Republic of China.
  • Tang YH; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, 443000, People's Republic of China.
  • Huang Y; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.
  • Chen Z; Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China.
  • Fan ZX; Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
  • Huang CX; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.
Mol Biol Rep ; 48(5): 3893-3901, 2021 May.
Article em En | MEDLINE | ID: mdl-34032975
Fluvastatin, a traditional fat-decreasing drug, is widely used for curing cardiovascular disease. Previous reports demonstrated that fluvastatin pretreatment protected against myocardial ischemia/reperfusion (I/R) by inhibiting TLR4 signaling pathway and/or reducing proinflammatory cytokines. However, whether fluvastatin has a cardioprotective effect against apoptosis and autophagy remains unknown. This study aims to evaluate whether the cardioprotective role of fluvastatin in I/R is mediated by high-mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) pathway via anti-apoptotic and anti-autophagic functions. Sprague-Dawley rats were anesthetized, artificially ventilated and subjected to 30 min of coronary occlusion, followed by 4 h of reperfusion. The animals were randomized into four groups: (i) Sham operation; (ii) I/R; (iii) I/R + low-dosage fluvastatin (10 mg/kg); and (iv) I/R + high-dosage fluvastatin (20 mg/kg). After reperfusion, the hemodynamic parameters, myocardial infarct size, structural alteration of myocardium, apoptosis index, pro-inflammatory cytokine production, Beclin-1, Light chain 3 (LC3), HMGB1, TLR4 and Nuclear factor kappa B (NF-κB) protein levels were measured and recorded. It was found that fluvastatin preconditioning improved left ventricular dysfunction, reduced HMGB1/TLR4/NF-κB expressions, and inhibited cardiomyocyte apoptosis, autophagy, and inflammation reaction. Moreover, treatment with fluvastatin ameliorated myocardial injury by reducing infarct size, causing less damage to cardiac structure, downregulating autophagy-related protein expression and releasing pro-inflammation mediators. Our findings indicate that fluvastatin exerts beneficial effects on cardiac ischemic damage, which may be associated with its anti-autophagic and anti-apoptotic functions via inhibition of HMGB1/TLR4-related pathway during I/R injury.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / Apoptose / Fluvastatina Limite: Animals País como assunto: Asia Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / Apoptose / Fluvastatina Limite: Animals País como assunto: Asia Idioma: En Ano de publicação: 2021 Tipo de documento: Article