Your browser doesn't support javascript.
loading
Structure-based protein function prediction using graph convolutional networks.
Gligorijevic, Vladimir; Renfrew, P Douglas; Kosciolek, Tomasz; Leman, Julia Koehler; Berenberg, Daniel; Vatanen, Tommi; Chandler, Chris; Taylor, Bryn C; Fisk, Ian M; Vlamakis, Hera; Xavier, Ramnik J; Knight, Rob; Cho, Kyunghyun; Bonneau, Richard.
Afiliação
  • Gligorijevic V; Center for Computational Biology, Flatiron Institute, New York, NY, USA. vgligorijevic@flatironinstitute.org.
  • Renfrew PD; Center for Computational Biology, Flatiron Institute, New York, NY, USA.
  • Kosciolek T; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
  • Leman JK; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
  • Berenberg D; Center for Computational Biology, Flatiron Institute, New York, NY, USA.
  • Vatanen T; Center for Computational Biology, Flatiron Institute, New York, NY, USA.
  • Chandler C; Courant Institute of Mathematical Sciences, Department of Computer Science, New York University, New York, NY, USA.
  • Taylor BC; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Fisk IM; The Liggins Institute, University of Auckland, Auckland, New Zealand.
  • Vlamakis H; Center for Computational Biology, Flatiron Institute, New York, NY, USA.
  • Xavier RJ; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
  • Knight R; Scientific Computing Core, Flatiron Institute, Simons Foundation, New York, NY, USA.
  • Cho K; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Bonneau R; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Commun ; 12(1): 3168, 2021 05 26.
Article em En | MEDLINE | ID: mdl-34039967
The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, we introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence features extracted from a protein language model and protein structures. It outperforms current leading methods and sequence-based Convolutional Neural Networks and scales to the size of current sequence repositories. Augmenting the training set of experimental structures with homology models allows us to significantly expand the number of predictable functions. DeepFRI has significant de-noising capability, with only a minor drop in performance when experimental structures are replaced by protein models. Class activation mapping allows function predictions at an unprecedented resolution, allowing site-specific annotations at the residue-level in an automated manner. We show the utility and high performance of our method by annotating structures from the PDB and SWISS-MODEL, making several new confident function predictions. DeepFRI is available as a webserver at https://beta.deepfri.flatironinstitute.org/ .
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas / Estrutura Terciária de Proteína / Biologia Computacional / Aprendizado Profundo / Modelos Biológicos Tipo de estudo: Evaluation_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas / Estrutura Terciária de Proteína / Biologia Computacional / Aprendizado Profundo / Modelos Biológicos Tipo de estudo: Evaluation_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article