Your browser doesn't support javascript.
loading
Predicting thermal pleasure experienced in dynamic environments from simulated cutaneous thermoreceptor activity.
Parkinson, Thomas; Zhang, Hui; Arens, Ed; He, Yingdong; de Dear, Richard; Elson, John; Parkinson, Alex; Maranville, Clay; Wang, Andrew.
Afiliação
  • Parkinson T; Center for the Built Environment (CBE), University of California Berkeley, Berkeley, California, USA.
  • Zhang H; Center for the Built Environment (CBE), University of California Berkeley, Berkeley, California, USA.
  • Arens E; Center for the Built Environment (CBE), University of California Berkeley, Berkeley, California, USA.
  • He Y; Center for the Built Environment (CBE), University of California Berkeley, Berkeley, California, USA.
  • de Dear R; Indoor Environmental Quality Lab, School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW, Australia.
  • Elson J; Ford Motor Company, Dearborn, Michigan, USA.
  • Parkinson A; Department of Mathematics, Macquarie University, Sydney, NSW, Australia.
  • Maranville C; Ford Motor Company, Dearborn, Michigan, USA.
  • Wang A; Center for the Built Environment (CBE), University of California Berkeley, Berkeley, California, USA.
Indoor Air ; 31(6): 2266-2280, 2021 11.
Article em En | MEDLINE | ID: mdl-34048603
ABSTRACT
Research into human thermal perception indoors has focused on "neutrality" under steady-state conditions. Recent interest in thermal alliesthesia has highlighted the hedonic dimension of our thermal world that has been largely overlooked by science. Here, we show the activity of sensory neurons can predict thermal pleasure under dynamic exposures. A numerical model of cutaneous thermoreceptors was applied to skin temperature measurements from 12 human subjects. A random forest model trained on simulated thermoreceptor impulses could classify pleasure responses (F1 score of 67%) with low false positives/negatives (4%). Accuracy increased (83%) when excluding the few extreme (dis)pleasure responses. Validation on an independent dataset confirmed model reliability. This is the first empirical demonstration of the relationship between thermoreceptors and pleasure arising from thermal stimuli. Insights into the neurophysiology of thermal perception can enhance the experience of built environments through designs that promote sensory excitation instead of neutrality.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Termorreceptores / Poluição do Ar em Ambientes Fechados Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Termorreceptores / Poluição do Ar em Ambientes Fechados Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article