A Porous Copper-Organic Framework Assembled by [Cu12] Nanocages: Highly Efficient CO2 Capture and Chemical Fixation and Theoretical DFT Calculations.
Inorg Chem
; 60(12): 9122-9131, 2021 Jun 21.
Article
em En
| MEDLINE
| ID: mdl-34061517
A new porous copper-organic framework assembled from 12-nuclear [Cu12] nanocages {[Cu2(L4-)(H2O)2]·4DMA·2H2O}n (1) (H4L = 5,5'-(butane-1,4-diyl)-bis(oxy)-diisophthalic acid) was successfully prepared and structurally characterized. Compound 1 feathering of a 3D framework with two types of 1D nanotubular channels and a large specific surface area can effectively enrich various harmful dyes. Additionally, due to the carbon dioxide (CO2) interactions with open Cu(II) sites and the electron-rich ether oxygen atoms of ligand in 1, it exhibits a highly selective CO2 uptake. Interestingly, 1 can effectively catalyze the cycloaddition reaction of CO2 with various epoxides under mild conditions, which is ascribed to the Lewis acid Cu(II) sites in the framework of 1. Importantly, 1 acting as a heterogeneous catalyst can be recycled at least 10 times without an obvious loss of catalytic activity, and the CO2 cycloaddition mechanism was further uncovered by density functional theory (DFT) calculations. This study can greatly enrich the MOF catalysts system of CO2 conversion and also provide a valuable guidance for the design of efficient MOFs catalysts.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article