Your browser doesn't support javascript.
loading
Annotation of snoRNA abundance across human tissues reveals complex snoRNA-host gene relationships.
Fafard-Couture, Étienne; Bergeron, Danny; Couture, Sonia; Abou-Elela, Sherif; Scott, Michelle S.
Afiliação
  • Fafard-Couture É; Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada.
  • Bergeron D; Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada.
  • Couture S; Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada.
  • Abou-Elela S; Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada. sherif.abou.elela@usherbrooke.ca.
  • Scott MS; Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada. michelle.scott@usherbrooke.ca.
Genome Biol ; 22(1): 172, 2021 06 04.
Article em En | MEDLINE | ID: mdl-34088344
ABSTRACT

BACKGROUND:

Small nucleolar RNAs (snoRNAs) are mid-size non-coding RNAs required for ribosomal RNA modification, implying a ubiquitous tissue distribution linked to ribosome synthesis. However, increasing numbers of studies identify extra-ribosomal roles of snoRNAs in modulating gene expression, suggesting more complex snoRNA abundance patterns. Therefore, there is a great need for mapping the snoRNome in different human tissues as the blueprint for snoRNA functions.

RESULTS:

We used a low structure bias RNA-Seq approach to accurately quantify snoRNAs and compare them to the entire transcriptome in seven healthy human tissues (breast, ovary, prostate, testis, skeletal muscle, liver, and brain). We identify 475 expressed snoRNAs categorized in two abundance classes that differ significantly in their function, conservation level, and correlation with their host gene 390 snoRNAs are uniformly expressed and 85 are enriched in the brain or reproductive tissues. Most tissue-enriched snoRNAs are embedded in lncRNAs and display strong correlation of abundance with them, whereas uniformly expressed snoRNAs are mostly embedded in protein-coding host genes and are mainly non- or anticorrelated with them. Fifty-nine percent of the non-correlated or anticorrelated protein-coding host gene/snoRNA pairs feature dual-initiation promoters, compared to only 16% of the correlated non-coding host gene/snoRNA pairs.

CONCLUSIONS:

Our results demonstrate that snoRNAs are not a single homogeneous group of housekeeping genes but include highly regulated tissue-enriched RNAs. Indeed, our work indicates that the architecture of snoRNA host genes varies to uncouple the host and snoRNA expressions in order to meet the different snoRNA abundance levels and functional needs of human tissues.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Especificidade de Órgãos / RNA Nucleolar Pequeno / Anotação de Sequência Molecular Limite: Female / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Especificidade de Órgãos / RNA Nucleolar Pequeno / Anotação de Sequência Molecular Limite: Female / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article