Your browser doesn't support javascript.
loading
Significant contributions of combustion-related NH3 and non-fossil fuel NOx to elevation of nitrogen deposition in southwestern China over past five decades.
Huang, Hao; Song, Wei; Liu, Xue-Yan.
Afiliação
  • Huang H; School of Earth System Science, Tianjin University, Tianjin, China.
  • Song W; School of Earth System Science, Tianjin University, Tianjin, China.
  • Liu XY; School of Earth System Science, Tianjin University, Tianjin, China.
Glob Chang Biol ; 27(18): 4392-4402, 2021 Sep.
Article em En | MEDLINE | ID: mdl-34089542
ABSTRACT
Anthropogenic nitrogen (N) emissions and deposition have been increasing over past decades. However, spatiotemporal variations of N deposition levels and major sources remain unclear in many regions, which hinders making strategies of emission mitigation and evaluating effects of elevated N deposition. By investigating moss N contents and δ15 N values in southwestern (SW) China in 1954-1964, 1970-1994, and 2005-2015, we reconstructed fluxes and source contributions of atmospheric ammonium ( NH 4 + ) and nitrate ( NO 3 - ) deposition and evaluated their historical changes. For urban and non-urban sites, averaged moss N contents did not differ between 1954-1964 and 1970-1994 (1.2%-1.3%) but increased distinctly in 2005-2015 (1.6%-2.3%), and averaged moss δ15 N values decreased from +0.4‰ to +3.3‰ in 1954-1964 to -1.9‰ to -0.7‰ in 1974-1990, and to -4.8‰ to -3.6‰ in 2005-2015. Based on quantitative estimations, N deposition levels from the 1950s to the 2000s did not change in the earlier 20 years but were elevated substantially in the later 30 years. Moreover, the elevation of NH 4 + deposition (by 12.2 kg-N/ha/year at urban sites and 4.6 kg-N/ha/year at non-urban sties) was higher than that of NO 3 - deposition (by 6.0 and 2.9 kg-N/ha/year, respectively) in the later 30 years. This caused a shifted dominance from NO 3 - to NH 4 + in N deposition. Based on isotope source apportionments, contributions of combustion-related NH3 sources (vehicle exhausts, coal combustion, and biomass burning) to the elevation of NH 4 + deposition were two times higher than volatilization NH3 sources (wastes and fertilizers) in the later 30 years. Meanwhile, non-fossil fuel NOx sources (biomass burning, microbial N cycles) contributed generally more than fossil fuel NOx sources (vehicle exhausts and coal combustion) to the elevation of NO 3 - deposition. These results revealed significant contributions of combustion-related NH3 and non-fossil fuel NOx emissions to the historical elevation of N deposition in SW China, which is useful for emission mitigation and ecological effect evaluation of atmospheric N loading.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Nitrogênio País como assunto: Asia Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Nitrogênio País como assunto: Asia Idioma: En Ano de publicação: 2021 Tipo de documento: Article