Your browser doesn't support javascript.
loading
Insights into the formation of metal carbon nanocomposites for energy storage using hybrid NiFe layered double hydroxides as precursors.
Romero, Jorge; Varela, María; Assebban, Mhamed; Oestreicher, Víctor; Guedeja-Marrón, Alejandra; Jordá, Jose L; Abellán, Gonzalo; Coronado, Eugenio.
Afiliação
  • Romero J; Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 46980 Paterna Valencia Spain eugenio.coronado@uv.es gonzalo.abellan@uv.es.
  • Varela M; Universidad Complutense de Madrid, Instituto Pluridisciplinar & Departamento de Física de Materiales Madrid 28040 Spain mvarela@ucm.es.
  • Assebban M; Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 46980 Paterna Valencia Spain eugenio.coronado@uv.es gonzalo.abellan@uv.es.
  • Oestreicher V; Department of Chemistry and Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), University Erlangen-Nürnberg Henkestr. 42, 91054 Erlangen and Dr.-Mack Str. 81 90762 Fürth Germany.
  • Guedeja-Marrón A; Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 46980 Paterna Valencia Spain eugenio.coronado@uv.es gonzalo.abellan@uv.es.
  • Jordá JL; Universidad Complutense de Madrid, Instituto Pluridisciplinar & Departamento de Física de Materiales Madrid 28040 Spain mvarela@ucm.es.
  • Abellán G; Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas Avenida de los Naranjos s/n 46022 Valencia Spain.
  • Coronado E; Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 46980 Paterna Valencia Spain eugenio.coronado@uv.es gonzalo.abellan@uv.es.
Chem Sci ; 11(29): 7626-7633, 2020 Mar 24.
Article em En | MEDLINE | ID: mdl-34094140
ABSTRACT
NiFe-carbon magnetic nanocomposites prepared using hybrid sebacate intercalated layered double hydroxides (LDHs) as precursors are shown to be of interest as supercapacitors. Here, the low-temperature formation mechanism of these materials has been deciphered by means of a combined study using complementary in situ (temperature-dependent) techniques. Specifically, studies involving X-ray powder diffraction, thermogravimetry coupled to mass spectrometry (TG-MS), statistical Raman spectroscopy (SRS), aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) have been carried out. The experimental results confirm the early formation of FeNi3 nanoparticles at ca. 200-250 °C, preceding the concerted collapse of the starting NiFe-LDH laminar structure over just 50 °C (from 350 to 400 °C). At the same time, the catalytic interactions between the metallic atoms and the organic molecules permit the concomitant formation of a graphitic carbon matrix leading to the formation of the final FeNi3-carbon nanocomposite. Furthermore, in situ temperature-dependent experiments in the presence of the intrinsic magnetic field of the STEM-EELS allow observing the complete metal segregation of Ni and Fe even at 400 °C. These results provide fundamental insights into the catalytic formation of carbon-based nanocomposites using LDHs as precursors and pave the way for the fine-tuning of their properties, with special interest in the field of energy storage and conversion.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article