Your browser doesn't support javascript.
loading
Zirconium and Aluminum MOFs for Low-Pressure SO2 Adsorption and Potential Separation: Elucidating the Effect of Small Pores and NH2 Groups.
Brandt, Philipp; Xing, Shang-Hua; Liang, Jun; Kurt, Gülin; Nuhnen, Alexander; Weingart, Oliver; Janiak, Christoph.
Afiliação
  • Brandt P; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Xing SH; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Liang J; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China.
  • Kurt G; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Nuhnen A; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China.
  • Weingart O; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Janiak C; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
ACS Appl Mater Interfaces ; 13(24): 29137-29149, 2021 Jun 23.
Article em En | MEDLINE | ID: mdl-34115467
ABSTRACT
Finding new adsorbents for the desulfurization of flue gases is a challenging task but is of current interest, as even low SO2 emissions impair the environment and health. Four Zr- and eight Al-MOFs (Zr-Fum, DUT-67(Zr), NU-1000, MOF-808, Al-Fum, MIL-53(Al), NH2-MIL-53(Al), MIL-53(tdc)(Al), CAU-10-H, MIL-96(Al), MIL-100(Al), NH2-MIL-101(Al)) were examined toward their SO2 sorption capability. Pore sizes in the range of about 4-8 Å are optimal for SO2 uptake in the low-pressure range (up to 0.1 bar). Pore widths that are only slightly larger than the kinetic diameter of 4.1 Å of the SO2 molecules allow for multi-side-dispersive interactions, which translate into high affinity at low pressure. Frameworks NH2-MIL-53(Al) and NH2-MIL-101(Al) with an NH2-group at the linker tend to show enhanced SO2 affinity. Moreover, from single-gas adsorption isotherms, ideal adsorbed solution theory (IAST) selectivities toward binary SO2/CO2 gas mixtures were determined with selectivity values between 35 and 53 at a molar fraction of 0.01 SO2 (10.000 ppm) and 1 bar for the frameworks Zr-Fum, MOF-808, NH2-MIL-53(Al), and Al-Fum. Stability tests with exposure to dry SO2 during ≤10 h and humid SO2 during 5 h showed full retention of crystallinity and porosity for Zr-Fum and DUT-67(Zr). However, NU-1000, MOF-808, Al-Fum, MIL-53(tdc), CAU-10-H, and MIL-100(Al) exhibited ≥50-90% retained Brunauer-Emmett-Teller (BET)-surface area and pore volume; while NH2-MIL-100(Al) and MIL-96(Al) demonstrated a major loss of porosity under dry SO2 and MIL-53(Al) and NH2-MIL-53(Al) under humid SO2. SO2 binding sites were revealed by density functional theory (DFT) simulation calculations with adsorption energies of -40 to -50 kJ·mol-1 for Zr-Fum and Al-Fum and even above -50 kJ·mol-1 for NH2-MIL-53(Al), in agreement with the isosteric heat of adsorption near zero coverage (ΔHads0). The predominant, highest binding energy noncovalent binding modes in both Zr-Fum and Al-Fum feature µ-OHδ+···Î´-OSO hydrogen bonding interactions. The small pores of Al-Fum allow the interaction of two µ-OH bridges from opposite pore walls with the same SO2 molecule via OHδ+···Î´-OSOδ-···Î´+HO hydrogen bonds. For NH2-MIL-53(Al), the DFT high-energy binding sites involve NHδ+···Î´-OS together with the also present Al-µ-OHδ+···Î´-OS hydrogen bonding interactions and C6-πδ-···Î´+SO2, Nδ-···Î´+SO2 interactions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article