Your browser doesn't support javascript.
loading
Targeted CHO cell engineering approaches can reduce HCP-related enzymatic degradation and improve mAb product quality.
Dovgan, Tatiana; Golghalyani, Vahid; Zurlo, Fabio; Hatton, Diane; Lindo, Viv; Turner, Richard; Harris, Claire; Cui, Tingting.
Afiliação
  • Dovgan T; Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.
  • Golghalyani V; Purification Process Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.
  • Zurlo F; Analytical Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.
  • Hatton D; Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.
  • Lindo V; Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.
  • Turner R; Analytical Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.
  • Harris C; Purification Process Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.
  • Cui T; Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.
Biotechnol Bioeng ; 118(10): 3821-3831, 2021 10.
Article em En | MEDLINE | ID: mdl-34125434
Host cell proteins (HCP) that co-purify with biologics produced in Chinese hamster ovary cells have been shown to impact product quality through proteolytic degradation of recombinant proteins, leading to potential product losses. Several problematic HCPs can remain in the final product even after extensive purification. Each recombinant cell line has a unique HCP profile that can be determined by numerous upstream and downstream factors, including clonal variation and the protein sequence of the expressed therapeutic molecule. Here, we worked with recombinant cell lines with high levels of copurifying HCPs, and showed that in those cell lines even modest downregulation (≤50%) of the difficult to remove HCP Cathepsin D, through stable short hairpin RNA interference or monoallelic deletion of the target gene using CRISPR-Cas9, is sufficient to greatly reduce levels of co-purifying HCP as measured by high throughput targeted LC-MS. This reduction led to improved product quality by reducing fragmentation of the drug product in forced degradation studies to negligible levels. We also show the potential of cell engineering to target other undesired HCPs and relieve the burden on downstream purification.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Expressão Gênica / Engenharia Metabólica / Sistemas CRISPR-Cas / Anticorpos Monoclonais Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Expressão Gênica / Engenharia Metabólica / Sistemas CRISPR-Cas / Anticorpos Monoclonais Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article