Your browser doesn't support javascript.
loading
The association between fine particulate matter (PM2.5) and chronic kidney disease using electronic health record data in urban Minnesota.
Ghazi, Lama; Drawz, Paul E; Berman, Jesse D.
Afiliação
  • Ghazi L; Clinical and Translational Research Accelerator, Department of Medicine, Section of Nephrology, Yale University, New Haven, CT, USA. lamaghazi@gmail.com.
  • Drawz PE; Division of Renal Diseases and Hypertension, University of Minnesota, Minneapolis, MN, USA.
  • Berman JD; Division of Environmental Health Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
J Expo Sci Environ Epidemiol ; 32(4): 583-589, 2022 07.
Article em En | MEDLINE | ID: mdl-34127789
ABSTRACT

BACKGROUND:

Recent evidence has shown that fine particulate matter (PM2.5) may be an important environmental risk factor for chronic kidney disease (CKD), but few studies have examined this association for individual patients using fine spatial data.

OBJECTIVE:

To investigate the association between PM2.5 and CKD (estimated glomerular filtration rate [eGFR]<45 ml/min/1.73 m2) in the Twin-Cities area in Minnesota using a large electronic health care database (2012-2019).

METHODS:

We estimated the previous 1-year average PM2.5 from the first eGFR (measured with the CKD Epidemiology Collaboration equation using the first available creatinine measure during the baseline period [2012-2014]) using Environmental Protection Agency downscaler modeling data at the census tract level. We evaluated the spatial relative risk and clustering of CKD prevalence using a K-function test statistic. We assessed the prevalence ratio of the PM2.5 association with CKD incidence using a mixed effect Cox model, respectively.

RESULTS:

Patients (n = 20,289) in the fourth (PM2.5 > 10.4), third (10.3 < PM2.5 < 10.8) and second quartile (9.9 < PM2.5 < 10.3) vs. the first quartile (<9.9 µg/m3) had a 2.52[2.21, 2.87], 2.18[1.95, 2.45], and 1.72[1.52, 1.97] hazard rate of developing CKD in the fully adjusted models, respectively. We identified spatial heterogeneities and evidence of CKD clustering across our study region, but this spatial variation was accounted for by air pollution and individual covariates.

SIGNIFICANCE:

Exposure to higher PM2.5 is associated with a greater risk for incident CKD. Improvements in air quality, specifically at hotspots, may reduce CKD.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Poluição do Ar / Insuficiência Renal Crônica Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans País como assunto: America do norte Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Poluição do Ar / Insuficiência Renal Crônica Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans País como assunto: America do norte Idioma: En Ano de publicação: 2022 Tipo de documento: Article