Your browser doesn't support javascript.
loading
Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning.
Koblan, Luke W; Arbab, Mandana; Shen, Max W; Hussmann, Jeffrey A; Anzalone, Andrew V; Doman, Jordan L; Newby, Gregory A; Yang, Dian; Mok, Beverly; Replogle, Joseph M; Xu, Albert; Sisley, Tyler A; Weissman, Jonathan S; Adamson, Britt; Liu, David R.
Afiliação
  • Koblan LW; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  • Arbab M; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
  • Shen MW; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
  • Hussmann JA; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  • Anzalone AV; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
  • Doman JL; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
  • Newby GA; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  • Yang D; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
  • Mok B; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
  • Replogle JM; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Xu A; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
  • Sisley TA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Weissman JS; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Adamson B; Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
  • Liu DR; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Biotechnol ; 39(11): 1414-1425, 2021 11.
Article em En | MEDLINE | ID: mdl-34183861
Programmable C•G-to-G•C base editors (CGBEs) have broad scientific and therapeutic potential, but their editing outcomes have proved difficult to predict and their editing efficiency and product purity are often low. We describe a suite of engineered CGBEs paired with machine learning models to enable efficient, high-purity C•G-to-G•C base editing. We performed a CRISPR interference (CRISPRi) screen targeting DNA repair genes to identify factors that affect C•G-to-G•C editing outcomes and used these insights to develop CGBEs with diverse editing profiles. We characterized ten promising CGBEs on a library of 10,638 genomically integrated target sites in mammalian cells and trained machine learning models that accurately predict the purity and yield of editing outcomes (R = 0.90) using these data. These CGBEs enable correction to the wild-type coding sequence of 546 disease-related transversion single-nucleotide variants (SNVs) with >90% precision (mean 96%) and up to 70% efficiency (mean 14%). Computational prediction of optimal CGBE-single-guide RNA pairs enables high-purity transversion base editing at over fourfold more target sites than achieved using any single CGBE variant.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas / Edição de Genes Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas / Edição de Genes Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article