Your browser doesn't support javascript.
loading
Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide.
Koike, Kohei; Yoo, Seung-Jun; Bleymehl, Katherin; Omura, Masayo; Zapiec, Bolek; Pyrski, Martina; Blum, Thomas; Khan, Mona; Bai, Zhaodai; Leinders-Zufall, Trese; Mombaerts, Peter; Zufall, Frank.
Afiliação
  • Koike K; Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany.
  • Yoo SJ; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany.
  • Bleymehl K; Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany.
  • Omura M; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany.
  • Zapiec B; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany.
  • Pyrski M; Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany.
  • Blum T; Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany.
  • Khan M; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany.
  • Bai Z; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany.
  • Leinders-Zufall T; Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany. Electronic address: trese.leinders@uks.eu.
  • Mombaerts P; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany. Electronic address: peter.mombaerts@gen.mpg.de.
  • Zufall F; Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany. Electronic address: frank.zufall@uks.eu.
Neuron ; 109(15): 2469-2484.e7, 2021 08 04.
Article em En | MEDLINE | ID: mdl-34186026
ABSTRACT
The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Olfato / Mucosa Olfatória / Neurônios Receptores Olfatórios / Reação de Fuga Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Olfato / Mucosa Olfatória / Neurônios Receptores Olfatórios / Reação de Fuga Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article