Your browser doesn't support javascript.
loading
Amino acid δ13C and δ15N analyses reveal distinct species-specific patterns of trophic plasticity in a marine symbiosis.
Wall, Christopher B; Wallsgrove, Natalie J; Gates, Ruth D; Popp, Brian N.
Afiliação
  • Wall CB; Hawai'i Institute of Marine Biology University of Hawai'i at Manoa Honolulu Hawaii USA.
  • Wallsgrove NJ; Pacific Biosciences Research Center University of Hawai'i at Manoa Honolulu Hawaii USA.
  • Gates RD; Department of Earth Sciences University of Hawai'i at Manoa Honolulu Hawaii USA.
  • Popp BN; Hawai'i Institute of Marine Biology University of Hawai'i at Manoa Honolulu Hawaii USA.
Limnol Oceanogr ; 66(5): 2033-2050, 2021 May.
Article em En | MEDLINE | ID: mdl-34248204
ABSTRACT
Compound-specific isotope analyses (CSIA) and multivariate "isotope fingerprinting" track biosynthetic sources and reveal trophic interactions in food webs. However, CSIA have not been widely applied in the study of marine symbioses. Here, we exposed a reef coral (Montipora capitata) in symbiosis with Symbiodiniaceae algae to experimental treatments (autotrophy, mixotrophy, heterotrophy) to test for trophic shifts and amino acid (AA) sources using paired bulk (δ13C, δ15N) and AA-CSIA (δ13CAA, δ15NAA). Treatments did not influence carbon or nitrogen trophic proxies, thereby not supporting nutritional plasticity. Instead, hosts and symbionts consistently overlapped in essential- and nonessential-δ13CAA (11 of 13 amino acids) and trophic- and source-δ15NAA values (9 of 13 amino acids). Host and symbiont trophic-δ15NAA values positively correlated with a plankton end-member, indicative of trophic connections and dietary sources for trophic-AA nitrogen. However, mass balance of AA-trophic positions (TPGlx-Phe) revealed heterotrophic influences to be highly variable (1-41% heterotrophy). Linear discriminant analysis using M. capitata mean-normalized essential-δ13CAA with previously published values (Pocillopora meandrina) showed similar nutrition isotope fingerprints (Symbiodiniaceae vs. plankton) but revealed species-specific trophic strategies. Montipora capitata and Symbiodiniaceae shared identical AA-fingerprints, whereas P. meandrina was assigned to either symbiont or plankton nutrition. Thus, M. capitata was 100% reliant on symbionts for essential-δ13CAA and demonstrated autotrophic fidelity and contrasts with trophic plasticity reported in P. meandrina. While M. capitata AA may originate from host and/or symbiont biosynthesis, AA carbon is Symbiodiniaceae-derived. Together, AA-CSIA/isotope fingerprinting advances the study of coral trophic plasticity and are powerful tools in the study of marine symbioses.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article