Your browser doesn't support javascript.
loading
Development of a Deep-Learning Pipeline to Recognize and Characterize Macrophages in Colo-Rectal Liver Metastasis.
Cancian, Pierandrea; Cortese, Nina; Donadon, Matteo; Di Maio, Marco; Soldani, Cristiana; Marchesi, Federica; Savevski, Victor; Santambrogio, Marco Domenico; Cerina, Luca; Laino, Maria Elena; Torzilli, Guido; Mantovani, Alberto; Terracciano, Luigi; Roncalli, Massimo; Di Tommaso, Luca.
Afiliação
  • Cancian P; Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Cortese N; Department of Pathology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Donadon M; Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
  • Di Maio M; Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Soldani C; Department of Biomedical Science, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy.
  • Marchesi F; Department of Hepatobiliary and General Surgery Humanitas, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Savevski V; Department of Pathology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Santambrogio MD; Hepatobiliary Immunopathology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Cerina L; Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Laino ME; Department of Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy.
  • Torzilli G; Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Mantovani A; Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
  • Terracciano L; Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
  • Roncalli M; Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
  • Di Tommaso L; Department of Biomedical Science, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy.
Cancers (Basel) ; 13(13)2021 Jul 01.
Article em En | MEDLINE | ID: mdl-34282750
ABSTRACT
Quantitative analysis of Tumor Microenvironment (TME) provides prognostic and predictive information in several human cancers but, with few exceptions, it is not performed in daily clinical practice since it is extremely time-consuming. We recently showed that the morphology of Tumor Associated Macrophages (TAMs) correlates with outcome in patients with Colo-Rectal Liver Metastases (CLM). However, as for other TME components, recognizing and characterizing hundreds of TAMs in a single histopathological slide is unfeasible. To fasten this process, we explored a deep-learning based solution. We tested three Convolutional Neural Networks (CNNs), namely UNet, SegNet and DeepLab-v3, with three different segmentation strategies, semantic segmentation, pixel penalties and instance segmentation. The different experiments are compared according to the Intersection over Union (IoU), a metric describing the similarity between what CNN predicts as TAM and the ground truth, and the Symmetric Best Dice (SBD), which indicates the ability of CNN to separate different TAMs. UNet and SegNet showed intrinsic limitations in discriminating single TAMs (highest SBD 61.34±2.21), whereas DeepLab-v3 accurately recognized TAMs from the background (IoU 89.13±3.85) and separated different TAMs (SBD 79.00±3.72). This deep-learning pipeline to recognize TAMs in digital slides will allow the characterization of TAM-related metrics in the daily clinical practice, allowing the implementation of prognostic tools.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article