Your browser doesn't support javascript.
loading
X-ray studies bridge the molecular and macro length scales during the emergence of CoO assemblies.
Grote, Lukas; Zito, Cecilia A; Frank, Kilian; Dippel, Ann-Christin; Reisbeck, Patrick; Pitala, Krzysztof; Kvashnina, Kristina O; Bauters, Stephen; Detlefs, Blanka; Ivashko, Oleh; Pandit, Pallavi; Rebber, Matthias; Harouna-Mayer, Sani Y; Nickel, Bert; Koziej, Dorota.
Afiliação
  • Grote L; University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany.
  • Zito CA; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Frank K; University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany.
  • Dippel AC; São Paulo State University UNESP, São José do Rio Preto, Brazil.
  • Reisbeck P; Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany.
  • Pitala K; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Kvashnina KO; Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany.
  • Bauters S; AGH, University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
  • Detlefs B; Academic Center for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland.
  • Ivashko O; The Rossendorf Beamline at the European Synchrotron Radiation Facility ESRF, Grenoble, France.
  • Pandit P; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden, Germany.
  • Rebber M; The Rossendorf Beamline at the European Synchrotron Radiation Facility ESRF, Grenoble, France.
  • Harouna-Mayer SY; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden, Germany.
  • Nickel B; European Synchrotron Radiation Facility ESRF, Grenoble, France.
  • Koziej D; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
Nat Commun ; 12(1): 4429, 2021 Jul 20.
Article em En | MEDLINE | ID: mdl-34285227
ABSTRACT
The key to fabricating complex, hierarchical materials is the control of chemical reactions at various length scales. To this end, the classical model of nucleation and growth fails to provide sufficient information. Here, we illustrate how modern X-ray spectroscopic and scattering in situ studies bridge the molecular- and macro- length scales for assemblies of polyhedrally shaped CoO nanocrystals. Utilizing high energy-resolution fluorescence-detected X-ray absorption spectroscopy, we directly access the molecular level of the nanomaterial synthesis. We reveal that initially Co(acac)3 rapidly reduces to square-planar Co(acac)2 and coordinates to two solvent molecules. Combining atomic pair distribution functions and small-angle X-ray scattering we observe that, unlike a classical nucleation and growth mechanism, nuclei as small as 2 nm assemble into superstructures of 20 nm. The individual nanoparticles and assemblies continue growing at a similar pace. The final spherical assemblies are smaller than 100 nm, while the nanoparticles reach a size of 6 nm and adopt various polyhedral, edgy shapes. Our work thus provides a comprehensive perspective on the emergence of nano-assemblies in solution.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article