Your browser doesn't support javascript.
loading
Automatic Processing of Numerosity in Human Neocortex Evidenced by Occipital and Parietal Neuromagnetic Responses.
Van Rinsveld, Amandine; Wens, Vincent; Guillaume, Mathieu; Beuel, Anthony; Gevers, Wim; De Tiège, Xavier; Content, Alain.
Afiliação
  • Van Rinsveld A; Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
  • Wens V; Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium.
  • Guillaume M; Magnetoencephalography Unit, Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB - Hôpital Erasme, Brussels 1070, Belgium.
  • Beuel A; Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
  • Gevers W; Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
  • De Tiège X; Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
  • Content A; Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium.
Cereb Cortex Commun ; 2(2): tgab028, 2021.
Article em En | MEDLINE | ID: mdl-34296173
ABSTRACT
Humans and other animal species are endowed with the ability to sense, represent, and mentally manipulate the number of items in a set without needing to count them. One central hypothesis is that this ability relies on an automated functional system dedicated to numerosity, the perception of the discrete numerical magnitude of a set of items. This system has classically been associated with intraparietal regions, however accumulating evidence in favor of an early visual number sense calls into question the functional role of parietal regions in numerosity processing. Targeting specifically numerosity among other visual features in the earliest stages of processing requires high temporal and spatial resolution. We used frequency-tagged magnetoencephalography to investigate the early automatic processing of numerical magnitudes and measured the steady-state brain responses specifically evoked by numerical and other visual changes in the visual scene. The neuromagnetic responses showed implicit discrimination of numerosity, total occupied area, and convex hull. The source reconstruction corresponding to the implicit discrimination responses showed common and separate sources along the ventral and dorsal visual pathways. Occipital sources attested the perceptual salience of numerosity similarly to both other implicitly discriminable visual features. Crucially, we found parietal responses uniquely associated with numerosity discrimination, showing automatic processing of numerosity in the parietal cortex, even when not relevant to the task. Taken together, these results provide further insights into the functional roles of parietal and occipital regions in numerosity encoding along the visual hierarchy.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article