Your browser doesn't support javascript.
loading
Aryl hydrocarbon receptor activation by Lactobacillus reuteri tryptophan metabolism alleviates Escherichia coli-induced mastitis in mice.
Zhao, Caijun; Hu, Xiaoyu; Bao, Lijuan; Wu, Keyi; Feng, Lianjun; Qiu, Min; Hao, Haoyang; Fu, Yunhe; Zhang, Naisheng.
Afiliação
  • Zhao C; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
  • Hu X; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
  • Bao L; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
  • Wu K; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
  • Feng L; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
  • Qiu M; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
  • Hao H; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
  • Fu Y; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
  • Zhang N; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
PLoS Pathog ; 17(7): e1009774, 2021 07.
Article em En | MEDLINE | ID: mdl-34297785
The intestinal microbiota has been associated with the occurrence and development of mastitis, which is one of the most serious diseases of lactating women and female animals, but the underlying mechanism has not yet been elucidated. Aryl hydrocarbon receptor (AhR) activation by microbiota tryptophan metabolism-derived ligands is involved in maintaining host homeostasis and resisting diseases. We investigated whether AhR activation by microbiota-metabolic ligands could influence mastitis development in mice. In this study, we found that AhR activation using Ficz ameliorated mastitis symptoms, which were related to limiting NF-κB activation and enhancing barrier function. Impaired AhR activation by disturbing the intestinal microbiota initiated mastitis, and processed Escherichia coli (E. coli)-induced mastitis in mice. Supplementation with dietary tryptophan attenuated the mastitis, but attenuation was inhibited by the intestinal microbiota abrogation, while administering tryptophan metabolites including IAld and indole but not IPA, rescued the tryptophan effects in dysbiotic mice. Supplementation with a Lactobacillus reuteri (L. reuteri) strain with the capacity to produce AhR ligands also improved E. coli-induced mastitis in an AhR-dependent manner. These findings provide evidence for novel therapeutic strategies for treating mastitis, and support the role of metabolites derived from the intestinal microbiota in improving distal disease.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de Hidrocarboneto Arílico / Probióticos / Limosilactobacillus reuteri / Microbioma Gastrointestinal / Mastite Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de Hidrocarboneto Arílico / Probióticos / Limosilactobacillus reuteri / Microbioma Gastrointestinal / Mastite Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article