Your browser doesn't support javascript.
loading
Integral methods for automatic quantification of fast-scan-cyclic-voltammetry detected neurotransmitters.
Espín, Leonardo X; Asp, Anders J; Trevathan, James K; Ludwig, Kip A; Lujan, J Luis.
Afiliação
  • Espín LX; Department of Neurologic Surgery, Rochester, Minnesota, United States of America.
  • Asp AJ; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America.
  • Trevathan JK; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America.
  • Ludwig KA; Department of Neurologic Surgery, Rochester, Minnesota, United States of America.
  • Lujan JL; Department of Neurologic Surgery, Rochester, Minnesota, United States of America.
PLoS One ; 16(7): e0254594, 2021.
Article em En | MEDLINE | ID: mdl-34310610
Modern techniques for estimating basal levels of electroactive neurotransmitters rely on the measurement of oxidative charges. This requires time integration of oxidation currents at certain intervals. Unfortunately, the selection of integration intervals relies on ad-hoc visual identification of peaks on the oxidation currents, which introduces sources of error and precludes the development of automated procedures necessary for analysis and quantification of neurotransmitter levels in large data sets. In an effort to improve charge quantification techniques, here we present novel methods for automatic selection of integration boundaries. Our results show that these methods allow quantification of oxidation reactions both in vitro and in vivo and of multiple analytes in vitro.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dopamina / Serotonina / Neurotransmissores / Técnicas Eletroquímicas Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dopamina / Serotonina / Neurotransmissores / Técnicas Eletroquímicas Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article