Your browser doesn't support javascript.
loading
Quantitative protein profiling of phenobarbital-induced drug metabolizing enzymes in rat liver by liquid chromatography mass spectrometry using formalin-fixed paraffin-embedded samples.
Yamauchi, Hirofumi; Andou, Tomohiro; Watanabe, Takeshi; Gotou, Masamitsu; Anayama, Hisashi.
Afiliação
  • Yamauchi H; Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan. Electronic address: hirofumi.yamauchi@takeda.com.
  • Andou T; Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
  • Watanabe T; Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
  • Gotou M; Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
  • Anayama H; Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
J Pharmacol Toxicol Methods ; 112: 107107, 2021.
Article em En | MEDLINE | ID: mdl-34363961
ABSTRACT
Administration of a compound can induce drug-metabolizing enzymes (DMEs) in the liver. DME induction can affect various parameters in toxicology studies. Therefore, evaluation of DME induction is important for interpreting test compound-induced biological responses. Several methods such as measurement of hepatic microsomal DME activity using substrates, electron microscopy, or immunohistochemistry have been used; however, these methods are limited in throughput and specificity or are not quantitative. Liquid chromatography mass spectrometry (LC/MS)-based protein analysis can detect and quantify multiple proteins simultaneously per assay. Studies have shown that formalin-fixed paraffin-embedded (FFPE) samples, which are routinely collected in toxicology studies, can be used for LC/MS-based protein analysis. To validate the utility of LC/MS using FFPE samples for quantitative evaluation of DME induction, we treated rats with a DME inducer, phenobarbital, and compared the protein expression levels of 13 phase-I and 11 phase-II DMEs between FFPE and fresh frozen hepatic samples using LC/MS. A good correlation between data from FFPE and frozen samples was obtained after analysis. In FFPE and frozen samples, the expression of 6 phase-I and 8 phase-II DMEs showed a similar significant increase and a prominent rise in Cyp2b2 and Cyp3a1 levels. In addition, LC/MS data were consistent with the measurement of microsomal DME activities. These results suggest that LC/MS-based protein expression analysis using FFPE samples is as effective as that using frozen samples for detecting DME induction.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteômica / Espectrometria de Massas em Tandem Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteômica / Espectrometria de Massas em Tandem Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article