Your browser doesn't support javascript.
loading
Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals.
Sirpal, Parikshat; Damseh, Rafat; Peng, Ke; Nguyen, Dang Khoa; Lesage, Frédéric.
Afiliação
  • Sirpal P; École Polytechnique de Montréal, Université de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, H3C 3A7, Canada. parikshat.sirpal@polymtl.ca.
  • Damseh R; Neurology Division, Centre Hospitalier de L'Université de Montréal (CHUM), 1000 Saint-Denis, Montréal, H2X 0C1, Canada. parikshat.sirpal@polymtl.ca.
  • Peng K; École Polytechnique de Montréal, Université de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, H3C 3A7, Canada.
  • Nguyen DK; Neurology Division, Centre Hospitalier de L'Université de Montréal (CHUM), 1000 Saint-Denis, Montréal, H2X 0C1, Canada.
  • Lesage F; Neurology Division, Centre Hospitalier de L'Université de Montréal (CHUM), 1000 Saint-Denis, Montréal, H2X 0C1, Canada.
Neuroinformatics ; 20(3): 537-558, 2022 07.
Article em En | MEDLINE | ID: mdl-34378155
In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model's fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectroscopia de Luz Próxima ao Infravermelho / Epilepsia Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectroscopia de Luz Próxima ao Infravermelho / Epilepsia Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article