Your browser doesn't support javascript.
loading
Control of the stochastic response of magnetization dynamics in spin-torque oscillator through radio-frequency magnetic fields.
Tsunegi, Sumito; Taniguchi, Tomohiro; Suzuki, Daiki; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji; Kubota, Hitoshi.
Afiliação
  • Tsunegi S; National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, 305-8568, Japan. tsunegi.sb@aist.go.jp.
  • Taniguchi T; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. tsunegi.sb@aist.go.jp.
  • Suzuki D; National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, 305-8568, Japan. tomohiro-taniguchi@aist.go.jp.
  • Yakushiji K; National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, 305-8568, Japan.
  • Fukushima A; National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, 305-8568, Japan.
  • Yuasa S; National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, 305-8568, Japan.
  • Kubota H; National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, 305-8568, Japan.
Sci Rep ; 11(1): 16285, 2021 Aug 11.
Article em En | MEDLINE | ID: mdl-34381110
ABSTRACT
Neuromorphic computing using spintronic devices, such as spin-torque oscillators (STOs), has been intensively studied for energy-efficient data processing. One of the critical issues in this application is stochasticity in magnetization dynamics, which limits the accuracy of computation. Such stochastic behavior, however, plays a key role in stochastic computing and machine learning. It is therefore important to develop methods for both suppressing and enhancing stochastic response in spintronic devices. We report on experimental investigations on control of stochastic quantity, such as the width of a distribution of transient time in magnetization dynamics in vortex-type STO. The spin-transfer effect can suppress stochasticity in transient dynamics from a non-oscillating to oscillating state, whereas an application of a radio-frequency magnetic field is effective in reducing stochasticity on the time evolution of the oscillating state.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article