Your browser doesn't support javascript.
loading
Long noncoding RNA HOXC-AS3 enhances the progression of cervical cancer via activating ErbB signaling pathway.
Zhao, Runsheng; Song, Jing; Jin, Yiqiang; Liu, Yingying.
Afiliação
  • Zhao R; Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng, Xiangyang, 441000, Hubei, China.
  • Song J; Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng, Xiangyang, 441000, Hubei, China.
  • Jin Y; Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng, Xiangyang, 441000, Hubei, China. jjilt47@163.com.
  • Liu Y; Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng, Xiangyang, 441000, Hubei, China. 729623627@qq.com.
J Mol Histol ; 52(5): 991-1006, 2021 Oct.
Article em En | MEDLINE | ID: mdl-34387789
ABSTRACT
Emerging evidence reveals that long noncoding RNAs (lncRNAs) contribute to human tumorigenesis. Nevertheless, the function of HOXC cluster antisense RNA 3 (HOXC-AS3) in human cervical cancer (CC) remains largely unknown. The levels of HOXC-AS3, miR-105-5p and SOS1 in CC tissues and cells were monitored by reverse transcription-polymerase chain reaction (RT-PCR) and western blot (WB). Gain- and loss-of-function experiments were conducted to verify the function of HOXC-AS3 and miR-105-5p in CC cells. Meanwhile, cell proliferation, apoptosis, migration and invasion were examined by the cell counting kit-8 (CCK8) experiment, colony formation assay, flow cytometry and Transwell assay. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were carried out to test the regulatory interaction of HOXC-AS3, miR-105-5p and SOS1. In addition, in vivo experiment was performed to certain the role of HOXC-AS3 in tumorigenesis of CC. HOXC-AS3 was overexpressed in CC tissues (vs. adjacent normal tissues) and CC cells. Besides, the higher HOXC-AS3 profile was associated with the poorer clinical prognosis of CC patients. Overexpression of HOXC-AS3 promoted cell growth, migration and invasion, hampered apoptosis, whereas knocking down HOXC-AS3 exhibited the reverse effects. MiR-105-5p was a downstream target of HOXC-AS3, and it mediated the HOXC-AS3-induced oncogenic effects. Mechanistically, the bioinformatic analysis illustrated that SOS1 was targeted by miR-105-5p. Up-regulating SOS1 heightened the growth, migration and invasion of CC cells by enhancing the ErbB signaling pathway, which was reversed by miR-105-5p. Up-regulated HOXC-AS3 aggravates CC by promoting SOS1 expression via targeting miR-105-5p.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Neoplasias do Colo do Útero / Progressão da Doença / RNA Longo não Codificante / Receptores ErbB Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Middle aged Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Neoplasias do Colo do Útero / Progressão da Doença / RNA Longo não Codificante / Receptores ErbB Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Middle aged Idioma: En Ano de publicação: 2021 Tipo de documento: Article