Your browser doesn't support javascript.
loading
Proton Traffic Jam: Effect of Nanoconfinement and Acid Concentration on Proton Hopping Mechanism.
Adams, Ellen M; Hao, Hongxia; Leven, Itai; Rüttermann, Maximilian; Wirtz, Hanna; Havenith, Martina; Head-Gordon, Teresa.
Afiliação
  • Adams EM; Lehrstuhl für Physkalische Chemie II, Ruhr Universität Bochum, 44801, Bochum, Germany.
  • Hao H; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
  • Leven I; Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California, 94720, USA.
  • Rüttermann M; Department of Chemistry, University of California, Berkeley, California, 94720, USA.
  • Wirtz H; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
  • Havenith M; Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California, 94720, USA.
  • Head-Gordon T; Department of Chemistry, University of California, Berkeley, California, 94720, USA.
Angew Chem Int Ed Engl ; 60(48): 25419-25427, 2021 11 22.
Article em En | MEDLINE | ID: mdl-34402145
ABSTRACT
The properties of the water network in concentrated HCl acid pools in nanometer-sized reverse nonionic micelles were probed with TeraHertz absorption, dielectric relaxation spectroscopy, and reactive force field simulations capable of describing proton hopping mechanisms. We identify that only at a critical micelle size of W0 =9 do solvated proton complexes form in the water pool, accompanied by a change in mechanism from Grotthuss forward shuttling to one that favors local oscillatory hopping. This is due to a preference for H+ and Cl- ions to adsorb to the micelle interface, together with an acid concentration effect that causes a "traffic jam" in which the short-circuiting of the hydrogen-bonding motif of the hydronium ion decreases the forward hopping rate throughout the water interior even as the micelle size increases. These findings have implications for atmospheric chemistry, biochemical and biophysical environments, and energy materials, as transport of protons vital to these processes can be suppressed due to confinement, aggregation, and/or concentration.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article