Your browser doesn't support javascript.
loading
Weak Reaction Scatterometry of Plasmonic Resonance Light Scattering with Machine Learning.
Ma, Yun Peng; Li, Qian; Luo, Jun Bo; Huang, Cheng Zhi; Zhou, Jun.
Afiliação
  • Ma YP; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Computer and Information Science, Southwest University, Chongqing 400715, P. R. China.
  • Li Q; Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
  • Luo JB; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Computer and Information Science, Southwest University, Chongqing 400715, P. R. China.
  • Huang CZ; Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
  • Zhou J; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Computer and Information Science, Southwest University, Chongqing 400715, P. R. China.
Anal Chem ; 93(35): 12131-12138, 2021 09 07.
Article em En | MEDLINE | ID: mdl-34432436
Weak reactions are usually overlooked due to weak detectable features and susceptibility to interference from noise signals. Strategies for detecting weak reactions are essential for exploring reaction mechanisms and exploiting potential applications. Machine learning has recently been successfully used to identify patterns and trends in the data. Here, it is demonstrated that machine learning-based techniques can offer accurate local surface plasmon resonance (LSPR) scatterometry by improving the precision of the plasmonic scattering imaging in weak chemical reactions. Dark-field microscopy (DFM) imaging technique is the most effective method for high-sensitivity plasmonic nanoparticles LSPR scatterometry. Unfortunately, deviations caused by the instrument and operating errors are inevitable, and it is difficult to effectively detect the presence of weak reactions. Thus, introducing a machine learning calibration model to automatically calibrate the scattering signal of the nanoprobe in the reaction process can greatly improve the confidence of LSPR scatterometry under DFM imaging and allow DFM imaging to effectively monitor unobvious or weak reactions. By this approach, the weak oxidation of silver nanoparticles (AgNPs) in water by dissolved oxygen was successfully monitored. Moreover, a trivial reaction between AgNPs and mercury ions was detected in a dilute mercury solution with a concentration greater than 1.0 × 10-10 mol/L. These results suggest the great potential of the combination of LSPR scatterometry and machine learning as a method for imaging analysis and intelligent sensing.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas Idioma: En Ano de publicação: 2021 Tipo de documento: Article