Your browser doesn't support javascript.
loading
OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naïve and primed pluripotent states in human.
Huang, Xin; Park, Kyoung-Mi; Gontarz, Paul; Zhang, Bo; Pan, Joshua; McKenzie, Zachary; Fischer, Laura A; Dong, Chen; Dietmann, Sabine; Xing, Xiaoyun; Shliaha, Pavel V; Yang, Jihong; Li, Dan; Ding, Junjun; Lungjangwa, Tenzin; Mitalipova, Maya; Khan, Shafqat A; Imsoonthornruksa, Sumeth; Jensen, Nick; Wang, Ting; Kadoch, Cigall; Jaenisch, Rudolf; Wang, Jianlong; Theunissen, Thorold W.
Afiliação
  • Huang X; Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
  • Park KM; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
  • Gontarz P; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • Zhang B; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
  • Pan J; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • McKenzie Z; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
  • Fischer LA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • Dong C; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Dietmann S; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  • Xing X; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Shliaha PV; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
  • Yang J; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • Li D; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
  • Ding J; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • Lungjangwa T; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
  • Mitalipova M; Institute of Informatics (I2), Washington University School of Medicine, St. Louis, MO, USA.
  • Khan SA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • Imsoonthornruksa S; Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
  • Jensen N; Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Wang T; Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
  • Kadoch C; Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
  • Jaenisch R; Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Wang J; Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Theunissen TW; Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Nat Commun ; 12(1): 5123, 2021 08 26.
Article em En | MEDLINE | ID: mdl-34446700
ABSTRACT
Understanding the molecular underpinnings of pluripotency is a prerequisite for optimal maintenance and application of embryonic stem cells (ESCs). While the protein-protein interactions of core pluripotency factors have been identified in mouse ESCs, their interactome in human ESCs (hESCs) has not to date been explored. Here we mapped the OCT4 interactomes in naïve and primed hESCs, revealing extensive connections to mammalian ATP-dependent nucleosome remodeling complexes. In naïve hESCs, OCT4 is associated with both BRG1 and BRM, the two paralog ATPases of the BAF complex. Genome-wide location analyses and genetic studies reveal that these two enzymes cooperate in a functionally redundant manner in the transcriptional regulation of blastocyst-specific genes. In contrast, in primed hESCs, OCT4 cooperates with BRG1 and SOX2 to promote chromatin accessibility at ectodermal genes. This work reveals how a common transcription factor utilizes differential BAF complexes to control distinct transcriptional programs in naïve and primed hESCs.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Proteínas Nucleares / Cromatina / Trifosfato de Adenosina / DNA Helicases / Fator 3 de Transcrição de Octâmero / Células-Tronco Embrionárias / Fatores de Transcrição SOXB1 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Proteínas Nucleares / Cromatina / Trifosfato de Adenosina / DNA Helicases / Fator 3 de Transcrição de Octâmero / Células-Tronco Embrionárias / Fatores de Transcrição SOXB1 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article