Your browser doesn't support javascript.
loading
Light Absorption in Nanowire Photonic Crystal Slabs and the Physics of Exceptional Points: The Shape Shifter Modes.
Trendafilov, Simeon; Allen, Jeffery W; Allen, Monica S; Dev, Sukrith U; Li, Ziyuan; Fu, Lan; Jagadish, Chennupati.
Afiliação
  • Trendafilov S; Air Force Research Laboratory, Munitions Directorate, Eglin AFB, Valparaiso, FL 32542, USA.
  • Allen JW; Air Force Research Laboratory, Munitions Directorate, Eglin AFB, Valparaiso, FL 32542, USA.
  • Allen MS; Air Force Research Laboratory, Munitions Directorate, Eglin AFB, Valparaiso, FL 32542, USA.
  • Dev SU; Air Force Research Laboratory, Munitions Directorate, Eglin AFB, Valparaiso, FL 32542, USA.
  • Li Z; Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia.
  • Fu L; Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia.
  • Jagadish C; Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia.
Sensors (Basel) ; 21(16)2021 Aug 11.
Article em En | MEDLINE | ID: mdl-34450862
ABSTRACT
Semiconductor nanowire arrays have been demonstrated as promising candidates for nanoscale optoelectronics applications due to their high detectivity as well as tunable photoresponse and bandgap over a wide spectral range. In the infrared (IR), where these attributes are more difficult to obtain, nanowires will play a major role in developing practical devices for detection, imaging and energy harvesting. Due to their geometry and periodic nature, vertical nanowire and nanopillar devices naturally lend themselves to waveguide and photonic crystal mode engineering leading to multifunctional materials and devices. In this paper, we computationally develop theoretical basis to enable better understanding of the fundamental electromagnetics, modes and couplings that govern these structures. Tuning the photonic response of a nanowire array is contingent on manipulating electromagnetic power flow through the lossy nanowires, which requires an intimate knowledge of the photonic crystal modes responsible for the power flow. Prior published work on establishing the fundamental physical modes involved has been based either on the modes of individual nanowires or numerically computed modes of 2D photonic crystals. We show that a unified description of the array key electromagnetic modes and their behavior is obtainable by taking into account modal interactions that are governed by the physics of exceptional points. Such models that describe the underlying physics of the photoresponse of nanowire arrays will facilitate the design and optimization of ensembles with requisite performance. Since nanowire arrays represent photonic crystal slabs, the essence of our results is applicable to arbitrary lossy photonic crystals in any frequency range.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article