Your browser doesn't support javascript.
loading
Radiation damage to biological samples: still a pertinent issue.
Garman, Elspeth F; Weik, Martin.
Afiliação
  • Garman EF; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
  • Weik M; Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
J Synchrotron Radiat ; 28(Pt 5): 1278-1283, 2021 Sep 01.
Article em En | MEDLINE | ID: mdl-34475277
An understanding of radiation damage effects suffered by biological samples during structural analysis using both X-rays and electrons is pivotal to obtain reliable molecular models of imaged molecules. This special issue on radiation damage contains six papers reporting analyses of damage from a range of biophysical imaging techniques. For X-ray diffraction, an in-depth study of multi-crystal small-wedge data collection single-wavelength anomalous dispersion phasing protocols is presented, concluding that an absorbed dose of 5 MGy per crystal was optimal to allow reliable phasing. For small-angle X-ray scattering, experiments are reported that evaluate the efficacy of three radical scavengers using a protein designed to give a clear signature of damage in the form of a large conformational change upon the breakage of a disulfide bond. The use of X-rays to induce OH radicals from the radiolysis of water for X-ray footprinting are covered in two papers. In the first, new developments and the data collection pipeline at the NSLS-II high-throughput dedicated synchrotron beamline are described, and, in the second, the X-ray induced changes in three different proteins under aerobic and low-oxygen conditions are investigated and correlated with the absorbed dose. Studies in XFEL science are represented by a report on simulations of ultrafast dynamics in protic ionic liquids, and, lastly, a broad coverage of possible methods for dose efficiency improvement in modalities using electrons is presented. These papers, as well as a brief synopsis of some other relevant literature published since the last Journal of Synchrotron Radiation Special Issue on Radiation Damage in 2019, are summarized below.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Substâncias Macromoleculares Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Substâncias Macromoleculares Idioma: En Ano de publicação: 2021 Tipo de documento: Article