Your browser doesn't support javascript.
loading
Levetiracetam promoted rat embryonic neurogenesis via NMDA receptor-mediated mechanism in vitro.
Alavi, Mohaddeseh Sadat; Negah, Sajad Sahab; Ghorbani, Ahmad; Hosseini, Azar; Sadeghnia, Hamid R.
Afiliação
  • Alavi MS; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
  • Negah SS; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
  • Ghorbani A; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
  • Hosseini A; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
  • Sadeghnia HR; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants,
Life Sci ; 284: 119923, 2021 Nov 01.
Article em En | MEDLINE | ID: mdl-34481865
ABSTRACT

AIMS:

Levetiracetam (LEV) is a broad-spectrum antiepileptic drug with neuroprotective properties and novel mechanisms of action. Some evidence suggests that LEV may impact adult neurogenesis, but the results are controversial. The present study was aimed to evaluate the effects of LEV on the proliferation and differentiation of rat embryonic neural stem cells (NSCs) and to explore the role of GABAB or NMDA receptors. MAIN

METHODS:

NSCs were isolated from rat fetal ganglionic eminence at embryonic day 14.5. The effects of LEV on viability, proliferation, neurosphere formation, and neuronal or astroglial differentiation of NSCs were assessed using resazurin, BrdU incorporation, immunocytochemistry, quantitative real-time PCR, and western blotting. Additionally, we addressed the relationship between treatment with NMDA and GABAB receptor antagonists (MK801 and saclofen, respectively) in combination with LEV on these parameters. KEY

FINDINGS:

The data showed that LEV (50 µM) significantly increased the number (p < 0.01) and diameter of neurospheres (p < 0.05), enhanced proliferation (p < 0.01), and promoted neuronal differentiation, as revealed by significantly increased expressions of DCX and NeuN. The expressions of astroglial markers, GFAP and Olig2, were markedly reduced. The addition of MK801 (10 µM) significantly diminished neurospheres growth (p < 0.001), decreased the number of proliferating cells (p < 0.01), and reduced the number of new neurons (p < 0.001) but increased the astroglial cells (p < 0.001) induced by LEV. Co-treatment with saclofen (25 µM) did not significantly affect LEV-induced NSCs proliferation and differentiation.

SIGNIFICANCE:

Our findings suggest that LEV may enhance rat embryonic neurogenesis mainly through an NMDA receptor-mediated mechanism.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de N-Metil-D-Aspartato / Embrião de Mamíferos / Neurogênese / Levetiracetam Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de N-Metil-D-Aspartato / Embrião de Mamíferos / Neurogênese / Levetiracetam Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article