Your browser doesn't support javascript.
loading
Real-time effects of Cd(II) on the cellular membrane permeability.
Zhang, Biao; Pan, Na; Fan, Xiaoyin; Lu, Liping; Wang, Xiayan.
Afiliação
  • Zhang B; Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China. lipinglu@bjut.edu.cn.
  • Pan N; Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China. lipinglu@bjut.edu.cn.
  • Fan X; Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China. lipinglu@bjut.edu.cn.
  • Lu L; Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China. lipinglu@bjut.edu.cn.
  • Wang X; Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
Analyst ; 146(19): 5973-5979, 2021 Sep 27.
Article em En | MEDLINE | ID: mdl-34499067
ABSTRACT
Cell membrane permeability is one of the main indicators of cytotoxicity and related to many critical biological pathways. Here, we determined the Cd2+-induced membrane permeability of human MCF-7 cells using ferrocene methanol molecular probes based on scanning electrochemical microscopy (SECM). The cell height and topography were examined with an impermeable Ru(NH3)6Cl3 probe. The membrane permeability exhibited no significant changes when the Cd2+ incubation time was less than 2 h and its concentration was less than 40 µM. The permeability increased when the Cd2+ concentration was greater than 60 µM, or when the incubation time was longer than 3 h. From the combined 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cytoskeleton imaging experiments, it was found that the changes occurred because the cells exhibited a defensive mode and their membranes contracted when treated with a low concentration of Cd2+ for a short time. However, the cell membranes were irreversibly damaged when the cytoskeleton structures were destroyed, and the cell activities decreased at high concentrations over long periods. Interestingly, through the comparison with an x-scan study, it was found that DPV technology shows a higher performance in the detection of changes in the membrane permeability. Using a combination of cytoskeleton fluorescence imaging and cell-viability tests, the effect of the cadmium metal on the cell membrane permeability can be explored deeper and more comprehensively. This study provides a new idea for exploring the changes in the cell membrane permeability and may be helpful for rapid evaluation of cytotoxicity.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cádmio Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cádmio Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article