Your browser doesn't support javascript.
loading
Genomic Features Associated with the Degree of Phenotypic Resistance to Carbapenems in Carbapenem-Resistant Klebsiella pneumoniae.
Bulman, Zackery P; Krapp, Fiorella; Pincus, Nathan B; Wenzler, Eric; Murphy, Katherine R; Qi, Chao; Ozer, Egon A; Hauser, Alan R.
Afiliação
  • Bulman ZP; Department of Pharmacy Practice, University of Illinois at Chicagogrid.185648.6, Chicago, Illinois, USA.
  • Krapp F; Department of Medicine, Division of Infectious Diseases, Northwestern Universitygrid.16753.36 Feinberg School of Medicine, Chicago, Illinois, USA.
  • Pincus NB; Department of Microbiology-Immunology, Northwestern Universitygrid.16753.36 Feinberg School of Medicine, Chicago, Illinois, USA.
  • Wenzler E; Department of Pharmacy Practice, University of Illinois at Chicagogrid.185648.6, Chicago, Illinois, USA.
  • Murphy KR; Department of Microbiology-Immunology, Northwestern Universitygrid.16753.36 Feinberg School of Medicine, Chicago, Illinois, USA.
  • Qi C; Department of Pathology, Northwestern Universitygrid.16753.36 Feinberg School of Medicine, Chicago, Illinois, USA.
  • Ozer EA; Department of Medicine, Division of Infectious Diseases, Northwestern Universitygrid.16753.36 Feinberg School of Medicine, Chicago, Illinois, USA.
  • Hauser AR; Department of Medicine, Division of Infectious Diseases, Northwestern Universitygrid.16753.36 Feinberg School of Medicine, Chicago, Illinois, USA.
mSystems ; 6(5): e0019421, 2021 Oct 26.
Article em En | MEDLINE | ID: mdl-34519526
ABSTRACT
Carbapenem-resistant Klebsiella pneumoniae strains cause severe infections that are difficult to treat. The production of carbapenemases such as the K. pneumoniae carbapenemase (KPC) is a common mechanism by which these strains resist killing by the carbapenems. However, the degree of phenotypic carbapenem resistance (MIC) may differ markedly between isolates with similar carbapenemase genes, suggesting that our understanding of the underlying mechanisms of carbapenem resistance remains incomplete. To address this problem, we determined the whole-genome sequences of 166 K. pneumoniae clinical isolates resistant to meropenem, imipenem, or ertapenem. Multiple linear regression analysis of this collection of largely blaKPC-3-containing sequence type 258 (ST258) isolates indicated that blaKPC copy number and some outer membrane porin gene mutations were associated with higher MICs to carbapenems. A trend toward higher MICs was also observed with those blaKPC genes carried by the d isoform of Tn4401. In contrast, ompK37 mutations were associated with lower carbapenem MICs, and extended spectrum ß-lactamase genes were not associated with higher or lower MICs in carbapenem-resistant K. pneumoniae. A machine learning approach based on the whole-genome sequences of these isolates did not result in a substantial improvement in prediction of isolates with high or low MICs. These results build upon previous findings suggesting that multiple factors influence the overall carbapenem resistance levels in carbapenem-resistant K. pneumoniae isolates. IMPORTANCE Klebsiella pneumoniae can cause severe infections in the blood, urinary tract, and lungs. Resistance to carbapenems in K. pneumoniae is an urgent public health threat, since it can make these isolates difficult to treat. While individual contributors to carbapenem resistance in K. pneumoniae have been studied, few reports explore their combined effects in clinical isolates. We sequenced 166 clinical carbapenem-resistant K. pneumoniae isolates to evaluate the contribution of known genes to carbapenem MICs and to try to identify novel genes associated with higher carbapenem MICs. The blaKPC copy number and some outer membrane porin gene mutations were associated with higher carbapenem MICs. In contrast, mutations in one specific porin, ompK37, were associated with lower carbapenem MICs. Machine learning did not result in a substantial improvement in the prediction of carbapenem resistance nor did it identify novel genes associated with carbapenem resistance. These findings enhance our understanding of the many contributors to carbapenem resistance in K. pneumoniae.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article