Your browser doesn't support javascript.
loading
In planta Activity of the Novel Copper Product HA + Cu(II) Based on a Biocompatible Drug Delivery System on Vine Physiology and Trials for the Control of Botryosphaeria Dieback.
Mondello, Vincenzo; Fernandez, Olivier; Guise, Jean-François; Trotel-Aziz, Patricia; Fontaine, Florence.
Afiliação
  • Mondello V; Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes RIBP EA 4707, USC INRAE 1488, SFR Condorcet CNRS 3417, BP1039, Reims, France.
  • Fernandez O; Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes RIBP EA 4707, USC INRAE 1488, SFR Condorcet CNRS 3417, BP1039, Reims, France.
  • Guise JF; Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes RIBP EA 4707, USC INRAE 1488, SFR Condorcet CNRS 3417, BP1039, Reims, France.
  • Trotel-Aziz P; Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes RIBP EA 4707, USC INRAE 1488, SFR Condorcet CNRS 3417, BP1039, Reims, France.
  • Fontaine F; Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes RIBP EA 4707, USC INRAE 1488, SFR Condorcet CNRS 3417, BP1039, Reims, France.
Front Plant Sci ; 12: 693995, 2021.
Article em En | MEDLINE | ID: mdl-34539689
The growing concerns on human and environment health are forcing the plant protection industry toward the formulation of more eco-sustainable plant protection products (PPP), both efficient and innovative in their approach to disease control. A large number of these innovative formulations now rely on a combination of pathogens antagonistic properties and stimulation of natural plant defense to pathogens. The formulation HA + Cu(II), in which copper is delivered to the plants by the drug-delivery molecule hydroxyapatite (HA), was found efficient against the grapevine pathogens Plasmopara viticola and Phaeoacremonium minimum and able to induce the host-plant defense system. We investigated the HA + Cu(II) impacts on grapevine physiology, both in uninfected and when infected by the Botryosphaeria dieback agents Diplodia seriata and Neofusicoccum parvum. This study of plant physiology and disease impact were addressed to evaluate both the HA + Cu(II) potential as a plant defense elicitor and its possible and future use as PPP in vineyard. Our results showed that HA + Cu(II) induced several key-defense genes without negatively affecting plant growth and photosynthetic activity. In addition, fungistatic effect on the two Botryosphaeriaceae at the in planta tested concentrations is reported. Altogether, our results obtained under controlled conditions fully support the potential of HA + Cu(II) as a promising PPP toward grapevine trunk diseases in vineyard.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article