Your browser doesn't support javascript.
loading
Effects of DC Magnetic Fields on Magnetoliposomes.
Nuñez-Magos, L; Lira-Escobedo, J; Rodríguez-López, R; Muñoz-Navia, M; Castillo-Rivera, F; Viveros-Méndez, P X; Araujo, E; Encinas, A; Saucedo-Anaya, S A; Aranda-Espinoza, S.
Afiliação
  • Nuñez-Magos L; Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
  • Lira-Escobedo J; Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
  • Rodríguez-López R; Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
  • Muñoz-Navia M; Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico.
  • Castillo-Rivera F; CONACyT-Instituto de Geología de la Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
  • Viveros-Méndez PX; Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Zacatecas, Mexico.
  • Araujo E; Departamento de Matematicas y Física, Instituto Tecnológico y de Estudios Superiores de Occidente, San Pedro Tlaquepaque, Mexico.
  • Encinas A; Laboratory of Magnetism, División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico.
  • Saucedo-Anaya SA; Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas, Zacatecas, Mexico.
  • Aranda-Espinoza S; Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
Front Mol Biosci ; 8: 703417, 2021.
Article em En | MEDLINE | ID: mdl-34589517
ABSTRACT
The potential use of magnetic nanoparticles (MNPs) in biomedicine as magnetic resonance, drug delivery, imagenology, hyperthermia, biosensors, and biological separation has been studied in different laboratories. One of the challenges on MNP elaboration for biological applications is the size, biocompatibility, heat efficiency, stabilization in physiological conditions, and surface coating. Magnetoliposome (ML), a lipid bilayer of phospholipids encapsulating MNPs, is a system used to reduce toxicity. Encapsulated MNPs can be used as a potential drug and a gene delivery system, and in the presence of magnetic fields, MLs can be accumulated in a target tissue by a strong gradient magnetic field. Here, we present a study of the effects of DC magnetic fields on encapsulated MNPs inside liposomes. Despite their widespread applications in biotechnology and environmental, biomedical, and materials science, the effects of magnetic fields on MLs are unclear. We use a modified coprecipitation method to synthesize superparamagnetic nanoparticles (SNPs) in aqueous solutions. The SNPs are encapsulated inside phospholipid liposomes to study the interaction between phospholipids and SNPs. Material characterization of SNPs reveals round-shaped nanoparticles with an average size of 12 nm, mainly magnetite. MLs were prepared by the rehydration method. After formation, we found two types of MLs one type is tense with SNPs encapsulated and the other is a floppy vesicle that does not show the presence of SNPs. To study the response of MLs to an applied DC magnetic field, we used a homemade chamber. Digitalized images show encapsulated SNPs assembled in chain formation when a DC magnetic field is applied. When the magnetic field is switched off, it completely disperses SNPs. Floppy MLs deform along the direction of the external applied magnetic field. Solving the relevant magnetostatic equations, we present a theoretical model to explain the ML deformations by analyzing the forces exerted by the magnetic field over the surface of the spheroidal liposome. Tangential magnetic forces acting on the ML surface result in a press force deforming MLs. The type of deformations will depend on the magnetic properties of the mediums inside and outside the MLs. The model predicts a coexistence region of oblate-prolate deformation in the zone where χ = 1. We can understand the chain formation in terms of a dipole-dipole interaction of SNP.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article