Your browser doesn't support javascript.
loading
IrOx @In2 O3 Heterojunction from Individually Crystallized Oxides for Weak-Light-Promoted Electrocatalytic Water Oxidation.
Yang, Yumei; Ji, Yujin; Li, Guangyu; Li, Youyong; Jia, Baohua; Yan, Junqing; Ma, Tianyi; Liu, Shengzhong Frank.
Afiliação
  • Yang Y; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
  • Ji Y; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
  • Li G; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
  • Li Y; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
  • Jia B; Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
  • Yan J; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
  • Ma T; Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
  • Liu SF; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
Angew Chem Int Ed Engl ; 60(51): 26790-26797, 2021 Dec 13.
Article em En | MEDLINE | ID: mdl-34591342
Multi-field coupling, especially photo-assisted electrocatalysis, has recently been studied to further improve the oxygen evolution reaction (OER). In this study, an n-type cubic In2 O3 semiconductor is employed for the first time to load IrOx species (Ir-In2 O3 mass ratio: 17.6 %). Consequently, the IrOx @In2 O3 heterojunction, which exhibits outstanding OER performance promoted by weak-light irradiation, is formed. Notably, IrOx (approximately 1.7 nm in size) and In2 O3 are observed to crystallize independently during heterogeneous nucleation with no Ir atoms doped in the In2 O3 lattice. This avoids Ir loss and ensures the full exposure of all Ir-based sites. The IrOx @In2 O3 heterojunction exhibits enhanced electrocatalytic water oxidation with overpotential values of 190 and 231 mV at current densities of 10 and 50 mA cm-2 , surpassing all IrOx -based catalyst results reported to date. Nano-sized IrOx on the surface, irradiated by the weak-light beam of LED-365 (1.8 mW cm-2 ), can be fully activated as an OER site. Moreover, the overpotential is further reduced to 176 and 210 mV to deliver the corresponding current. This work is anticipated to aid in the design of more efficient multi-field coupling OER systems.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article