Your browser doesn't support javascript.
loading
Demonstration of generating a 100 Gbit/s orbital-angular-momentum beam with a tunable mode order over a range of wavelengths using an integrated broadband pixel-array structure.
Opt Lett ; 46(19): 4765-4768, 2021 Oct 01.
Article em En | MEDLINE | ID: mdl-34598194
ABSTRACT
We experimentally generate an orbital-angular-momentum (OAM) beam with a tunable mode order over a range of wavelengths utilizing an integrated broadband pixel-array OAM emitter. The emitter is composed of a 3-to-4 coupler, four phase controllers, and a mode convertor. An optical input is split into four waveguides by the coupler. Subsequently, the four waveguide fields are coherently combined and transformed into a free-space OAM beam by the mode convertor. By tuning the phase delay Δφ between the four waveguides using the integrated phase controllers, the OAM order of the generated beam could be changed. Our results show that (a) a single OAM beam with a tunable OAM order (ℓ=-1 or ℓ=+1) is generated with the intermodal power coupling of <-11dB, and (b) in a wavelength range of 6.4 nm, a free-space link of a single 50 Gbaud quadrature-phase-shift-keying (QPSK) channel carried by the tunable OAM beam is achieved with a bit error rate below the forward-error-correction threshold. As proof of concept, a 400 Gbit/s OAM-multiplexed and WDM QPSK link is demonstrated with a ∼1-dB OSNR penalty compared with a single-beam link.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article