Your browser doesn't support javascript.
loading
Development and evaluation of a novel nanofibersolosome for enhancing the stability, in vitro bioaccessibility, and colonic delivery of cyanidin-3-O-glucoside.
Shishir, Mohammad Rezaul Islam; Suo, Hao; Liu, Xiaobing; Kang, Qingzheng; Xiao, Jianbo; Wang, Mingfu; Chen, Feng; Cheng, Ka-Wing.
Afiliação
  • Shishir MRI; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen Universit
  • Suo H; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
  • Liu X; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
  • Kang Q; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
  • Xiao J; Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang 212013, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.
  • Wang M; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
  • Chen F; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
  • Cheng KW; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China. Electronic address: kwcheng@szu.edu.cn.
Food Res Int ; 149: 110712, 2021 11.
Article em En | MEDLINE | ID: mdl-34600700
ABSTRACT
The development of colon-specific carrier systems using polysaccharides for oral delivery of nutraceuticals is of great importance for the treatment and/or prevention of inflammatory bowel diseases. In this study, self-assembly with the assistance of vortexing and pulsed-ultrasonication was employed to develop a Fibersol®-2 (a digestion-resistant polysaccharide) and lipoid S75 based novel nanocarrier (denoted as nanofibersolosome) for the colonic delivery of cyanidin-3-O-glucoside (C3G). A series of nanofibersolosome formulations (CFS-0.5-4, 0.5-4 represent the ratios of Fibersol®-2lipoid S75) were developed and their performance was compared with Fibersol®-2-free reference lipid formulation (CFS-0). The nanofibersolosomes (<150 nm) were spherical and unilamellar with high negative surface charge (-38 to -51 mV) and good encapsulation efficiency (EE > 90%). They performed much better than CFS-0 in retaining their physical properties during freeze drying, preventing particle aggregation, and retaining C3G during storage (4 and 25 ℃) and thermal treatments (40, 60, and 80 ℃). They also exhibited significantly higher stability during simulated gastrointestinal digestion than CFS-0. These desirable features of the nanofibersolosomes (especially CFS-0.5 and CFS-1) led to the efficient delivery of higher concentrations of C3G to the colon than CFS-0. Moreover, gastrointestinal-digested and colonic-fermented nanofibersolosome samples exhibited significantly higher DPPH radical scavenging activity and stronger promoting effect on short-chain fatty acid generation than CFS-0. These in vitro findings indicate that the novel nanofibersolosome possesses great potential for the colonic delivery of C3G and likely other hydrophilic labile phytochemicals that merits further evaluation in in vivo models.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Colo / Glucosídeos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Colo / Glucosídeos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article