Your browser doesn't support javascript.
loading
Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO2 Hydrogenation under Ambient Conditions.
Mo, Xiu-Fang; Liu, Chao; Chen, Ze-Wen; Ma, Fan; He, Piao; Yi, Xiao-Yi.
Afiliação
  • Mo XF; College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
  • Liu C; College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
  • Chen ZW; College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
  • Ma F; College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
  • He P; College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
  • Yi XY; College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
Inorg Chem ; 60(21): 16584-16592, 2021 Nov 01.
Article em En | MEDLINE | ID: mdl-34637291
ABSTRACT
Interconversion between CO2 + H2 and FA/formate is the most promising strategy for the fixation of carbon dioxide and reversible hydrogen storage; however, FA dehydrogenation and CO2 hydrogenation are usually studied separately using different catalysts for each reaction. This report describes of the catalysis of [Cp*Ir(N∧N)(X)]n+ (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; X = Cl, n = 0; X = H2O, n = 1) bearing a proton-responsive N∧N pyridylpyrrole ligand for both reactions. Complex 2-H2O catalyzes FA dehydrogenation at 90 °C with a TOFmax of 45 900 h-1. Its catalysis is more active in aqueous solution than in neat solution under base-free conditions. These complexes also catalyze CO2 hydrogenation in the presence of base to formate under atmospheric pressure (CO2/H2 = 0.05 MPa/0.05 MPa) at 25 °C with a TOF value of 4.5 h-1 in aqueous solution and with a TOF value of 29 h-1 in a methanol/H2O mixture solvent. The possible mechanism is proposed by intermediate characterization and KIE experiments. The extraordinary activity of these complexes are mainly attributed to the metal-ligand cooperative effect of the the pyrrole group to accept a proton in the dehydrogenation of formic acid and assist cooperative heterolytic H-H bond cleavage in CO2 hydrogenation.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article