Your browser doesn't support javascript.
loading
Distinct representation of ipsilateral hand movements in sensorimotor areas.
Bruurmijn, Mark L C M; Raemaekers, Mathijs; Branco, Mariana P; Ramsey, Nick F; Vansteensel, Mariska J.
Afiliação
  • Bruurmijn MLCM; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Raemaekers M; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Branco MP; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Ramsey NF; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Vansteensel MJ; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.
Eur J Neurosci ; 54(10): 7599-7608, 2021 11.
Article em En | MEDLINE | ID: mdl-34666418
ABSTRACT
There is ample evidence that the contralateral sensorimotor areas play an important role in movement generation, with the primary motor cortex and the primary somatosensory cortex showing a detailed spatial organization of the representation of contralateral body parts. Interestingly, there are also indications for a role of the motor cortex in controlling the ipsilateral side of the body. However, the precise function of ipsilateral sensorimotor cortex in unilateral movement control is still unclear. Here, we show hand movement representation in the ipsilateral sensorimotor hand area, in which hand gestures can be distinguished from each other and from contralateral hand gestures. High-field functional magnetic resonance imaging (fMRI) data acquired during the execution of six left- and six right-hand gestures by healthy volunteers showed ipsilateral activation mainly in the anterior section of precentral gyrus and the posterior section of the postcentral gyrus. Despite the lower activation in ipsilateral areas closer to the central sulcus, activity patterns for the 12 hand gestures could be mutually distinguished in these areas. The existence of a unique representation of ipsilateral hand movements in the human sensorimotor cortex favours the notion of transcallosal integrative processes that support optimal coordination of hand movements.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Córtex Sensório-Motor / Córtex Motor Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Córtex Sensório-Motor / Córtex Motor Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article