Your browser doesn't support javascript.
loading
Phospho-Ser784-VCP Drives Resistance of Pancreatic Ductal Adenocarcinoma to Genotoxic Chemotherapies and Predicts the Chemo-Sensitizing Effect of VCP Inhibitor.
Wang, Faliang; Vij, Kiran; Li, Lin; Dodhiawala, Paarth; Lim, Kian-Huat; Shao, Jieya.
Afiliação
  • Wang F; Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
  • Vij K; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
  • Li L; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
  • Dodhiawala P; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
  • Lim KH; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
  • Shao J; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Cancers (Basel) ; 13(20)2021 Oct 11.
Article em En | MEDLINE | ID: mdl-34680224
ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) patients have a dismal prognosis due in large part to chemotherapy resistance. However, a small subset containing defects in the DNA damage response (DDR) pathways are chemotherapy-sensitive. Identifying intrinsic and therapeutically inducible DDR defects can improve precision and efficacy of chemotherapies for PDAC. DNA repair requires dynamic reorganization of chromatin-associated proteins, which is orchestrated by the AAA+ ATPase VCP. We recently discovered that the DDR function of VCP is selectively activated by Ser784 phosphorylation. In this paper, we show that pSer784-VCP but not total VCP levels in primary PDAC tumors negatively correlate with patient survival. In PDAC cell lines, different pSer784-VCP levels are induced by genotoxic chemotherapy agents and positively correlate with genome stability and cell survival. Causal effects of pSer784-VCP on DNA repair and cell survival were confirmed using VCP knockdown and functional rescue. Importantly, DNA damage-induced pSer784-VCP rather than total VCP levels in PDAC cell lines predict their chemotherapy response and chemo-sensitizing ability of selective VCP inhibitor NMS-873. Therefore, pSer784-VCP drives genotoxic chemotherapy resistance of PDAC, and can potentially be used as a predictive biomarker as well as a sensitizing target to enhance the chemotherapy response of PDAC.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article