Your browser doesn't support javascript.
loading
Therapeutic supramolecular tubustecan hydrogel combined with checkpoint inhibitor elicits immunity to combat cancer.
Wang, Feihu; Su, Hao; Xu, Dongqing; Monroe, Maya K; Anderson, Caleb F; Zhang, Weijie; Oh, Richard; Wang, Zongyuan; Sun, Xuanrong; Wang, Han; Wan, Fengyi; Cui, Honggang.
Afiliação
  • Wang F; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States. Electronic address: fwang36@jhu.edu.
  • Su H; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States.
  • Xu D; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, 21205, United States.
  • Monroe MK; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States.
  • Anderson CF; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States.
  • Zhang W; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States.
  • Oh R; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States.
  • Wang Z; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States.
  • Sun X; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Center for Nanomedicine, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, United States.
  • Wang H; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States.
  • Wan F; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, 21205, United S
  • Cui H; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States; Department of Oncology and Sidney Kimmel C
Biomaterials ; 279: 121182, 2021 12.
Article em En | MEDLINE | ID: mdl-34688987
ABSTRACT
The clinical benefit of PD-1/PD-L1 blockade immunotherapy is substantially restricted by insufficient infiltration of T lymphocytes into tumors and compromised therapeutic effects due to immune-related adverse events following systemic administration. Some chemotherapeutic agents have been reported to trigger tumor-associated T cell responses, providing a promising strategy to achieve potent immune activation in a synergistic manner with PD-1 blockade immunotherapy. In light of this, a localized chemoimmunotherapy system was developed using an anti-cancer drug-based supramolecular polymer (SP) hydrogel to "re-edit" the host's immune system to combat cancer. This in situ forming injectable aPD1/TT6 SP hydrogel serves as a drug-delivery depot for sustained release of bioactive camptothecin (CPT) and aPD1 into the tumor microenvironment, priming the tumor for robust infiltration of tumor-associated T cells and subsequently prompting a response to the immune checkpoint blockade. Our in vivo results demonstrate that this chemoimmunotherapy hydrogel provokes a long-term and systemic anticancer T cell immune response, which elicits tumor regression while also inhibiting tumor recurrence and potential metastasis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrogéis / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrogéis / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article