Ultra-sensitive hybrid diamond nanothermometer.
Natl Sci Rev
; 8(5): nwaa194, 2021 May.
Article
em En
| MEDLINE
| ID: mdl-34691635
Nitrogen-vacancy (NV) centers in diamond are promising quantum sensors because of their long spin coherence time under ambient conditions. However, their spin resonances are relatively insensitive to non-magnetic parameters such as temperature. A magnetic-nanoparticle-nanodiamond hybrid thermometer, where the temperature change is converted to the magnetic field variation near the Curie temperature, were demonstrated to have enhanced temperature sensitivity ([Formula: see text]) (Wang N, Liu G-Q and Leong W-H et al. Phys Rev X 2018; 8: 011042), but the sensitivity was limited by the large spectral broadening of ensemble spins in nanodiamonds. To overcome this limitation, here we show an improved design of a hybrid nanothermometer using a single NV center in a diamond nanopillar coupled with a single magnetic nanoparticle of copper-nickel alloy, and demonstrate a temperature sensitivity of [Formula: see text]. This hybrid design enables detection of 2 mK temperature changes with temporal resolution of 5 ms. The ultra-sensitive nanothermometer offers a new tool to investigate thermal processes in nanoscale systems.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article