Your browser doesn't support javascript.
loading
ZnO nanowire optoelectronic synapse for neuromorphic computing.
Shen, Cong; Gao, Xu; Chen, Cheng; Ren, Shan; Xu, Jian-Long; Xia, Yi-Dong; Wang, Sui-Dong.
Afiliação
  • Shen C; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
  • Gao X; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
  • Chen C; School of Optoelectronic Science and Engineering, Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China.
  • Ren S; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
  • Xu JL; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
  • Xia YD; Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
  • Wang SD; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
Nanotechnology ; 33(6)2021 Nov 19.
Article em En | MEDLINE | ID: mdl-34736234
ABSTRACT
Artificial synapses that integrate functions of sensing, memory and computing are highly desired for developing brain-inspired neuromorphic hardware. In this work, an optoelectronic synapse based on the ZnO nanowire (NW) transistor is achieved, which can be used to emulate both the short-term and long-term synaptic plasticity. Synaptic potentiation is present when the device is stimulated by light pulses, arising from the light-induced O2desorption and the persistent photoconductivity behavior of the ZnO NW. On the other hand, synaptic depression occurs when the device is stimulated by electrical pulses in dark, which is realized by introducing a charge trapping layer in the gate dielectric to trap carriers. Simulation of a neural network utilizing the ZnO NW synapses is carried out, demonstrating a high recognition accuracy over 90% after only 20 training epochs for recognizing the Modified National Institute of Standards and Technology digits. The present nanoscale optoelectronic synapse has great potential in the development of neuromorphic visual systems.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article