Your browser doesn't support javascript.
loading
Decoding Activity in Broca's Area Predicts the Occurrence of Auditory Hallucinations Across Subjects.
Fovet, Thomas; Yger, Pierre; Lopes, Renaud; de Pierrefeu, Amicie; Duchesnay, Edouard; Houenou, Josselin; Thomas, Pierre; Szaffarczyk, Sébastien; Domenech, Philippe; Jardri, Renaud.
Afiliação
  • Fovet T; Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; CURE platform, Psychiatry Department, Fontan Hospital, Centre Hospitalier Universitaire de Lille, Lille, France; Centre National de Ressources et de Résilience Li
  • Yger P; Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; Institut de la Vision, Sorbonne Université, INSERM, Centre national de la recherche scientifique, Paris, France.
  • Lopes R; Vascular & Cognitive Deficits team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; In-vivo Imaging and Functions core facility, Neuroradiology Department, Centre Hospitalier Universitaire de Lille, Lille, France.
  • de Pierrefeu A; NeuroSpin, Univ Paris Saclay, CEA, Gif-sur-Yvette, France.
  • Duchesnay E; NeuroSpin, Univ Paris Saclay, CEA, Gif-sur-Yvette, France.
  • Houenou J; NeuroSpin, Univ Paris Saclay, CEA, Gif-sur-Yvette, France; Neurosurgery, Psychiatry and Addictology Departments, Groupe Hospitalier Universitaire Henri-Mondor, AP-HP, Créteil, France; Faculté de Santé UPEC, Université Paris Est Créteil, Créteil, France.
  • Thomas P; Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; CURE platform, Psychiatry Department, Fontan Hospital, Centre Hospitalier Universitaire de Lille, Lille, France.
  • Szaffarczyk S; Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France.
  • Domenech P; Institut du Cerveau et de la Moelle épinière, Sorbonne Université, INSERM, Centre national de la recherche scientifique, Paris, France; Neurosurgery, Psychiatry and Addictology Departments, Groupe Hospitalier Universitaire Henri-Mondor, AP-HP, Créteil, France; Faculté de Santé UPEC, Université Paris
  • Jardri R; Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; CURE platform, Psychiatry Department, Fontan Hospital, Centre Hospitalier Universitaire de Lille, Lille, France. Electronic address: renaud.jardri@chru-lille.fr.
Biol Psychiatry ; 91(2): 194-201, 2022 01 15.
Article em En | MEDLINE | ID: mdl-34742546
BACKGROUND: Functional magnetic resonance imaging (fMRI) capture aims at detecting auditory-verbal hallucinations (AVHs) from continuously recorded brain activity. Establishing efficient capture methods with low computational cost that easily generalize between patients remains a key objective in precision psychiatry. To address this issue, we developed a novel automatized fMRI-capture procedure for AVHs in patients with schizophrenia (SCZ). METHODS: We used a previously validated but labor-intensive personalized fMRI-capture method to train a linear classifier using machine learning techniques. We benchmarked the performances of this classifier on 2320 AVH periods versus resting-state periods obtained from SCZ patients with frequent symptoms (n = 23). We characterized patterns of blood oxygen level-dependent activity that were predictive of AVH both within and between subjects. Generalizability was assessed with a second independent sample gathering 2000 AVH labels (n = 34 patients with SCZ), while specificity was tested with a nonclinical control sample performing an auditory imagery task (840 labels, n = 20). RESULTS: Our between-subject classifier achieved high decoding accuracy (area under the curve = 0.85) and discriminated AVH from rest and verbal imagery. Optimizing the parameters on the first schizophrenia dataset and testing its performance on the second dataset led to an out-of-sample area under the curve of 0.85 (0.88 for the converse test). We showed that AVH detection critically depends on local blood oxygen level-dependent activity patterns within Broca's area. CONCLUSIONS: Our results demonstrate that it is possible to reliably detect AVH states from fMRI blood oxygen level-dependent signals in patients with SCZ using a multivariate decoder without performing complex preprocessing steps. These findings constitute a crucial step toward brain-based treatments for severe drug-resistant hallucinations.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esquizofrenia / Área de Broca Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esquizofrenia / Área de Broca Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article