Your browser doesn't support javascript.
loading
Multivariate analysis for organic milk authentication.
Xu, Siyan; Zhao, Chaomin; Deng, Xiaojun; Zhang, Runhe; Qu, Li; Wang, Min; Ren, Shuo; Wu, Hao; Yue, Zhenfeng; Niu, Bing.
Afiliação
  • Xu S; School of Life Sciences, Shanghai University, Shanghai 200444, China; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China.
  • Zhao C; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China. Electronic address: chaominzhao@126.com.
  • Deng X; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China.
  • Zhang R; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China.
  • Qu L; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China.
  • Wang M; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China.
  • Ren S; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China.
  • Wu H; Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518000, China.
  • Yue Z; Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518000, China.
  • Niu B; School of Life Sciences, Shanghai University, Shanghai 200444, China.
Article em En | MEDLINE | ID: mdl-34798418
To differentiate organic milk (OM) from conventional milk (CM), an orthogonal projection to latent structure-discriminant analysis (OPLS-DA) model was constructed using δ13C, δ15N, δ18O, 51 elements and 35 fatty acids (FAs) as the variables. So far, most reported studies barely use three or more types of variables, but more variables could avoid one-sidedness and get stabler models. Our multivariate model combines geographical and nutritional parameters and displays better explanatory and predictive abilities (R2X = 0.647, R2Y = 0.962 and Q2 = 0.821) than models based on fewer variables for differentiating OM and CM. In particular, δ15N, Se, δ13C, Eu, K and α-Linolenic acid (ALA) are found to be critical parameters for the discrimination of OM. These results show that the multivariate model based on stable isotopes, elements and FAs can be used to identify OM, and can potentially expand the global databases for quality and authenticity of milk.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Contaminação de Alimentos / Leite / Alimentos Orgânicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Contaminação de Alimentos / Leite / Alimentos Orgânicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article