Your browser doesn't support javascript.
loading
Inhibitory control of synaptic signals preceding locomotion in mouse frontal cortex.
Zhang, Chun-Lei; Koukouli, Fani; Allegra, Manuela; Ortiz, Cantin; Kao, Hsin-Lun; Maskos, Uwe; Changeux, Jean-Pierre; Schmidt-Hieber, Christoph.
Afiliação
  • Zhang CL; Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France. Electronic address: chunlei.zhang@pasteur.fr.
  • Koukouli F; Institut Pasteur, Université de Paris, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015 Paris, France; Institut Du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
  • Allegra M; Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France.
  • Ortiz C; Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France.
  • Kao HL; Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France.
  • Maskos U; Institut Pasteur, Université de Paris, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015 Paris, France.
  • Changeux JP; Institut Pasteur, Université de Paris, Department of Neuroscience, 75015 Paris, France; Collège de France, 75005 Paris, France.
  • Schmidt-Hieber C; Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France. Electronic address: christoph.schmidt-hieber@pasteur.fr.
Cell Rep ; 37(8): 110035, 2021 11 23.
Article em En | MEDLINE | ID: mdl-34818555
The frontal cortex is essential for organizing voluntary movement. The secondary motor cortex (MOs) is a frontal subregion thought to integrate internal and external inputs before motor action. However, how excitatory and inhibitory synaptic inputs to MOs neurons are integrated preceding movement remains unclear. Here, we address this question by performing in vivo whole-cell recordings from MOs neurons of head-fixed mice moving on a treadmill. We find that principal neurons produce slowly increasing membrane potential and spike ramps preceding spontaneous running. After goal-directed training, ramps show larger amplitudes and accelerated kinetics. Chemogenetic suppression of interneurons combined with modeling suggests that the interplay between parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons, along with principal neuron recurrent connectivity, shape ramping signals. Plasticity of excitatory synapses on SOM+ interneurons can explain the ramp acceleration after training. Altogether, our data reveal that local interneurons differentially control task-dependent ramping signals when MOs neurons integrate inputs preceding movement.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transmissão Sináptica / Locomoção / Córtex Motor Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transmissão Sináptica / Locomoção / Córtex Motor Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article