Your browser doesn't support javascript.
loading
Transthyretin Promotes Axon Growth via Regulation of Microtubule Dynamics and Tubulin Acetylation.
Eira, Jessica; Magalhães, Joana; Macedo, Nídia; Pero, Maria Elena; Misgeld, Thomas; Sousa, Mónica M; Bartolini, Francesca; Liz, Márcia A.
Afiliação
  • Eira J; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
  • Magalhães J; Neurodegeneration Team, Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
  • Macedo N; Neurodegeneration Team, Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
  • Pero ME; Neurodegeneration Team, Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
  • Misgeld T; Department of Pathology & Cell Biology, Columbia University, New York, NY, United States.
  • Sousa MM; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
  • Bartolini F; Institute of Neuronal Cell Biology, Technical University of Munich, German Center for Neurodegenerative Diseases (DZNE), Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
  • Liz MA; Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
Front Cell Dev Biol ; 9: 747699, 2021.
Article em En | MEDLINE | ID: mdl-34820375
ABSTRACT
Transthyretin (TTR), a plasma and cerebrospinal fluid protein, increases axon growth and organelle transport in sensory neurons. While neurons extend their axons, the microtubule (MT) cytoskeleton is crucial for the segregation of functional compartments and axonal outgrowth. Herein, we investigated whether TTR promotes axon elongation by modulating MT dynamics. We found that TTR KO mice have an intrinsic increase in dynamic MTs and reduced levels of acetylated α-tubulin in peripheral axons. In addition, they failed to modulate MT dynamics in response to sciatic nerve injury, leading to decreased regenerative capacity. Importantly, restoring acetylated α-tubulin levels of TTR KO dorsal root ganglia (DRG) neurons using an HDAC6 inhibitor is sufficient to completely revert defective MT dynamics and neurite outgrowth. In summary, our results reveal a new role for TTR in the modulation of MT dynamics by regulating α-tubulin acetylation via modulation of the acetylase ATAT1, and suggest that this activity underlies TTR neuritogenic function.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article