Your browser doesn't support javascript.
loading
Icaritin alleviates docetaxel-induced skin injury by suppressing reactive oxygen species via estrogen receptors.
Zou, Jie; Xu, Meng-Xia; Li, Fang; Wang, Yu-Hao; Li, Xiao-Qian; Yu, Dao-Jiang; Ma, Yi-Jia; Zhang, Yuan-Yuan; Sun, Xiao-Dong.
Afiliação
  • Zou J; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
  • Xu MX; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
  • Li F; Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
  • Wang YH; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
  • Li XQ; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
  • Yu DJ; Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
  • Ma YJ; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
  • Zhang YY; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
  • Sun XD; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
Thorac Cancer ; 13(2): 190-201, 2022 01.
Article em En | MEDLINE | ID: mdl-34825483
BACKGROUND: Docetaxel (DTX) exhibits antitumor effects against breast cancer by stabilizing microtubules and increasing the accumulation of reactive oxygen species (ROS). DTX extravasation during infusion often causes skin injury. The present study aimed to investigate the effects and mechanisms of icaritin (ICT) on DTX-induced skin injury. METHODS: The effects of ICT on the viability and apoptosis of HaCaT cells were measured by SRB assay and flow cytometry, respectively. Endogenous LC3 puncta and microtubules were determined by immunofluorescence. The number of mitochondria was measured by MitoTracker orange staining. ROS were determined by dihydroethidium staining. The expression of markers of ROS and autophagy were measured by western blotting. Chloroquine, compound D, and tamoxifen were employed as the inhibitor for autophagy and AMPK, estrogen receptors (ERs) modulator, respectively. RESULTS: DTX inhibited the viability and decreased apoptosis of HaCaT cells, which can be rescued by ICT. ICT decreased microtubule bundles, increased the number of mitochondria, and attenuated ROS of HaCaT cells induced by DTX. ICT blocks autophagy and the autophagic flux. Compound C or tamoxifen diminished the protection effects of ICT on DTX-treated HaCaT cells. CONCLUSION: ICT alleviates DTX-induced skin injury by suppressing ROS, reducing microtubule bundles, and blocking autophagy via ERs. Our study indicated that ICT may be a potential candidate for DTX-induced skin injury.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dermatopatias / Flavonoides / Receptores de Estrogênio / Espécies Reativas de Oxigênio / Docetaxel Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dermatopatias / Flavonoides / Receptores de Estrogênio / Espécies Reativas de Oxigênio / Docetaxel Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article