Your browser doesn't support javascript.
loading
Response of salinity gradient power generation to inflow mode and temperature difference by reverse electrodialysis.
Cui, Wei-Zhe; Ji, Zhi-Yong; Tumba, Kaniki; Zhang, Zhong-De; Wang, Jing; Zhang, Zhao-Xiang; Liu, Jie; Zhao, Ying-Ying; Yuan, Jun-Sheng.
Afiliação
  • Cui WZ; National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, Sch
  • Ji ZY; National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, Sch
  • Tumba K; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China; Department of Chemical Engineering, Mangosuthu University of Technology, UMlazi, Durban, 4031, South Africa.
  • Zhang ZD; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China; Langfang Yadeshi Environmental Protection Equipment Co., Ltd, Hebei, Langfang, 065099, China.
  • Wang J; National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, Sch
  • Zhang ZX; National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, Sch
  • Liu J; National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, Sch
  • Zhao YY; National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, Sch
  • Yuan JS; National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, Sch
J Environ Manage ; 303: 114124, 2022 Feb 01.
Article em En | MEDLINE | ID: mdl-34839173
ABSTRACT
Sustainable utilization has been becoming the core idea of concentrated seawater disposal, which makes the harvest of salinity gradient power based on reverse electrodialysis (RED) become one of the important ways. As the important factors affecting RED performance, different flow orientations along the membrane and solution temperature have been studied in the previous researches. However, there are still some details that need to be clarified. In this study, the inflow mode was further detailed investigated. The results showed that after eliminating the interference of bubbles in the counter-current, the co-current was still better than the counter-current; when the solution of HCC (high concentration compartment) and LCC (low concentration compartment) was circulated for 3 h, the concentration of concentrated seawater discharge liquid was reduced by 6.93%, which was conducive to reducing the negative impact on the marine ecological environment. Meanwhile, the response of salinity gradient power generation to temperature difference was that high temperature had a positive effect on power density, and the order was both the HCC and LCC (0.44 W m-2) > LCC (0.42 W m-2) > HCC (0.39 W m-2). Although the RED performance was more sensitive to the temperature rise of LCC, the positive temperature difference between HCC and LCC is a more practical advantage because the temperature of concentrated seawater in HCC is usually high. These new observations could provide supports for the industrial development of RED in generating electricity economically and reducing the negative environmental impact of concentrated seawater.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água do Mar / Salinidade / Energia Renovável Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água do Mar / Salinidade / Energia Renovável Idioma: En Ano de publicação: 2022 Tipo de documento: Article