Your browser doesn't support javascript.
loading
Modulating adult neurogenesis affects synaptic plasticity and cognitive functions in mouse models of Alzheimer's disease.
Zhang, Xiaoqin; Wei, Xiaojie; Mei, Yufei; Wang, Dongpi; Wang, Jing; Zhang, Yiping; Li, Xuekun; Gu, Yan; Peng, Guoping; Sun, Binggui.
Afiliação
  • Zhang X; Department of Physiology and Pharmacology, Medical School of Ningbo University, Ningbo, Zhejiang Province 315211, China.
  • Wei X; Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
  • Mei Y; Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
  • Wang D; Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Children's
  • Wang J; Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
  • Zhang Y; Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
  • Li X; Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310029, China.
  • Gu Y; Center for Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China.
  • Peng G; Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
  • Sun B; Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China. Electronic
Stem Cell Reports ; 16(12): 3005-3019, 2021 12 14.
Article em En | MEDLINE | ID: mdl-34861165
New neurons are abnormal in the adult hippocampus of Alzheimer's disease (AD) mouse models. The effects of modulating adult neurogenesis on AD pathogenesis differ from study to study. We reported recently that ablation of adult neural stem cells (aNSCs) was associated with improved memory in AD models. Here, we found that long-term potentiation (LTP) was improved in the hippocampus of APP/PS1 mice after ablation of aNSCs. This effect was confirmed in hAPP-J20 mice, a second AD mouse model. On the other hand, we found that exposure to enriched environment (EE) dramatically increased the number of DCX+ neurons, promoted dendritic growth, and affected the location of newborn neurons in the dentate gyrus of APP/PS1 mice, and EE exposure significantly ameliorated memory deficits in APP/PS1 mice. Together, our data suggest that both inhibiting abnormal adult neurogenesis and enhancing healthy adult neurogenesis could be beneficial for AD, and they are not mutually exclusive.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Envelhecimento / Cognição / Neurogênese / Doença de Alzheimer / Plasticidade Neuronal Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Envelhecimento / Cognição / Neurogênese / Doença de Alzheimer / Plasticidade Neuronal Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article