Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation.
Nat Commun
; 12(1): 7277, 2021 Dec 14.
Article
em En
| MEDLINE
| ID: mdl-34907190
Metal halide perovskite photodiodes (PPDs) offer high responsivity and broad spectral sensitivity, making them attractive for low-cost visible and near-infrared sensing. A significant challenge in achieving high detectivity in PPDs is lowering the dark current density (JD) and noise current (in). This is commonly accomplished using charge-blocking layers to reduce charge injection. By analyzing the temperature dependence of JD for lead-tin based PPDs with different bandgaps and electron-blocking layers (EBL), we demonstrate that while EBLs eliminate electron injection, they facilitate undesired thermal charge generation at the EBL-perovskite interface. The interfacial energy offset between the EBL and the perovskite determines the magnitude and activation energy of JD. By increasing this offset we realized a PPD with ultralow JD and in of 5 × 10-8 mA cm-2 and 2 × 10-14 A Hz-1/2, respectively, and wavelength sensitivity up to 1050 nm, establishing a new design principle to maximize detectivity in perovskite photodiodes.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article