Your browser doesn't support javascript.
loading
Transcriptional Pathology Evolves over Time in Rat Hippocampus after Lateral Fluid Percussion Traumatic Brain Injury.
Catta-Preta, Rinaldo; Zdilar, Iva; Jenner, Bradley; Doisy, Emily T; Tercovich, Kayleen; Nord, Alex S; Gurkoff, Gene G.
Afiliação
  • Catta-Preta R; Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA.
  • Zdilar I; Center for Neuroscience, University of California Davis, Davis, California, USA.
  • Jenner B; Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA.
  • Doisy ET; Center for Neuroscience, University of California Davis, Davis, California, USA.
  • Tercovich K; Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA.
  • Nord AS; Center for Neuroscience, University of California Davis, Davis, California, USA.
  • Gurkoff GG; Department of Neurological Surgery, University of California Davis, Davis, California, USA.
Neurotrauma Rep ; 2(1): 512-525, 2021.
Article em En | MEDLINE | ID: mdl-34909768
ABSTRACT
Traumatic brain injury (TBI) causes acute and lasting impacts on the brain, driving pathology along anatomical, cellular, and behavioral dimensions. Rodent models offer an opportunity to study the temporal progression of disease from injury to recovery. Transcriptomic and epigenomic analysis were applied to evaluate gene expression in ipsilateral hippocampus at 1 and 14 days after sham (n = 2 and 4, respectively per time point) and moderate lateral fluid percussion injury (n = 4 per time point). This enabled the identification of dynamic changes and differential gene expression (differentially expressed genes; DEGs) modules linked to underlying epigenetic response. We observed acute signatures associated with cell death, astrocytosis, and neurotransmission that largely recovered by 2 weeks. Inflammation and immune signatures segregated into upregulated modules with distinct expression trajectories and functions. Whereas most down-regulated genes recovered by 14 days, two modules with delayed and persistent changes were associated with cholesterol metabolism, amyloid beta clearance, and neurodegeneration. Differential expression was paralleled by changes in histone H3 lysine residue 4 trimethylation at the promoters of DEGs at 1 day post-TBI, with the strongest changes observed for inflammation and immune response genes. These results demonstrate how integrated genomics analysis in the pre-clinical setting has the potential to identify stage-specific biomarkers for injury and/or recovery. Though limited in scope here, our general strategy has the potential to capture pathological signatures over time and evaluate treatment efficacy at the systems level.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article